race track
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 42)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
M. Naveen Kumar ◽  
Vishal Jagota ◽  
Mohammad Shabaz

This article describes the power train design specifics in Formula student race vehicles used in the famed SAE India championship. To facilitate the physical validation of the design of the power train system of a formula student race car category vehicle engine of 610 cc displacement bike engine (KTM 390 model), a detailed design has been proposed with an approach of easing manufacturing and assembly along with full-scale prototype manufacturing. Many procedures must be followed while selecting a power train, such as engine displacement, fuel type, cooling type, throttle actuation, and creating the gear system to obtain the needed power and torque under various loading situations. Keeping the rules in mind, a well-suited engine was selected for the race track and transmission train was selected which gives the maximum performance. Based on the requirement, a power train was designed with all considerations we need to follow. Aside from torque and power, we designed an air intake with fuel efficiency in mind. Wireless sensors and cloud computing were used to monitor transmission characteristics such as transmission temperature management and vibration. The current study describes the design of an air intake manifold with a maximum restrictor diameter of 20 mm.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2244
Author(s):  
Maxim Borisov ◽  
Andrey Ermakov ◽  
Vadim Khankin ◽  
Yuri Kubyshin ◽  
Vasiliy Shvedunov

We consider three types of electron accelerators that can be used for various applications, such as industrial, medical, cargo inspection, and isotope production applications, and that require small- and medium-sized machines, namely classical microtron (CM), race-track microtron (RTM), and multisection linac. We review the principles of their operation, the specific features of the beam dynamics in these machines, discuss their advantages and weak points, and compare their technical characteristics. In particular, we emphasize the intrinsic symmetry of the stability region of microtrons. We argue that RTMs can be a preferable choice for medium energies (up to 100 MeV) and that the range of their potential applications can be widened, provided that the beam current losses are significantly reduced. In the article, we analyze two possible solutions in detail, namely increasing the longitudinal acceptance of an RTM using a higher-order harmonic accelerating structure and improving beam matching at the injection.


2021 ◽  
Author(s):  
Aijaz Lone ◽  
Arnab Ganguly ◽  
Divynahsu Divyanshu ◽  
Selma Amara ◽  
Govind Das ◽  
...  

In this work we present the creation, annihilation and dynamics of a topologically protected magnetic structure, a skyrmion, for neuromorphic computing application. We study the effect of Dzyaloshinskii Moriya interaction (DMI) and surface anisotropy on the skyrmion density. The relation between skyrmion annihilation threshold anisotropy Kth and DMI coefficient is evaluated. Furthermore, the skyrmion diameter dependence on these two parameters is studied. Using MOKE analysis we study the effect of external magnetic field on the skyrmion density and predict the threshold magnetic field for the transition of magnetic texture from Labriynth domains to skyrmions. These results are further supported by the MuMax simulations. The spin orbit torque SOT manipulation of skyrmion size and density is also presented for skyrmion applications in the race-track memory and neuromorphic computing. Motivated by the results, we propose a Skyrmionic neuromorphic device and using SOT switching mechanism, show its applicability as spintronic synapse and neuron. The MuMax simulations are coupled to the Non- Equilibrium Green’s Function formalism to model the neuron and synapse behavior. Finally, we conclude with the possibility of using these devices for pattern recognition and other unconventional computing paradigms.


2021 ◽  
Author(s):  
Aijaz Lone ◽  
Arnab Ganguly ◽  
Divynahsu Divyanshu ◽  
Selma Amara ◽  
Govind Das ◽  
...  

In this work we present the creation, annihilation and dynamics of a topologically protected magnetic structure, a skyrmion, for neuromorphic computing application. We study the effect of Dzyaloshinskii Moriya interaction (DMI) and surface anisotropy on the skyrmion density. The relation between skyrmion annihilation threshold anisotropy Kth and DMI coefficient is evaluated. Furthermore, the skyrmion diameter dependence on these two parameters is studied. Using MOKE analysis we study the effect of external magnetic field on the skyrmion density and predict the threshold magnetic field for the transition of magnetic texture from Labriynth domains to skyrmions. These results are further supported by the MuMax simulations. The spin orbit torque SOT manipulation of skyrmion size and density is also presented for skyrmion applications in the race-track memory and neuromorphic computing. Motivated by the results, we propose a Skyrmionic neuromorphic device and using SOT switching mechanism, show its applicability as spintronic synapse and neuron. The MuMax simulations are coupled to the Non- Equilibrium Green’s Function formalism to model the neuron and synapse behavior. Finally, we conclude with the possibility of using these devices for pattern recognition and other unconventional computing paradigms.


2021 ◽  
pp. 108692
Author(s):  
Yuhao Wu ◽  
Ruisi Zong ◽  
Huangpu Han ◽  
Shijia Lu ◽  
Jiajun Lin ◽  
...  

Author(s):  
A. Breus ◽  
S. Abashin ◽  
O. Serdiuk

Purpose: The application of a common magnetron discharge to the growth of carbon nanostructures is studied. The simplicity of the proposed technique can be beneficial for the development of new plasma reactors for large-scale production of carbon nanostructures. Design/methodology/approach: Graphite cathode was treated by carbon-containing powder accelerated by use of nozzle, and then aged in hydrogen. Superposition of glow and arc discharges was obtained, when putting the cathode under the negative biasing with respect to the walls of a vacuum chamber. The pulsed discharge was preserved through the whole time of treatment. This process was explained in terms of interaction of glow discharge plasma with a surface of the cathode made of non-melting material. Findings: The plasma treatment resulted in generation of the diverse nanostructures confirmed by SEM and TEM images. Spruce-like nanostructures and nanofibers are observed near the cathode edge where the plasma was less dense; a grass-like structure was grown in the area of “race-track”; net-like nanostructures are found among the nanofibers. These findings allow concluding about the possible implementation of the proposed method in industry. Research limitations/implications: The main limitation is conditioned by an explosive nature of nanostructure generation in arcs; thus, more elaborate design of the setup should be developed in order to collect the nanospecies in the following study. Practical implications: High-productivity plasma process of nanosynthesis was confirmed in this research. It can be used for possible manufacturing of field emitters, gas sensors, and supercapacitors. Originality/value: Synthesis of carbon nanostructures is conducted by use of a simple and well-known technique of magnetron sputtering deposition where a preliminary surface treatment is added to expand the production yield and diversity of the obtained nanostructures.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6598
Author(s):  
Xiaoyu Shen ◽  
Yuntian Teng ◽  
Xingxing Hu

Traditional fluxgate sensors used in geomagnetic field observations are large, costly, power-consuming and often limited in their use. Although the size of the micro-fluxgate sensors has been significantly reduced, their performance, including indicators such as accuracy and signal-to-noise, does not meet observational requirements. To address these problems, a new race-track type probe is designed based on a magnetic core made of a Co-based amorphous ribbon. The size of this single-component probe is only Φ10 mm × 30 mm. The signal processing circuit is also optimized. The whole size of the sensor integrated with probes and data acquisition module is Φ70 mm × 100 mm. Compared with traditional fluxgate and micro-fluxgate sensors, the designed sensor is compact and provides excellent performance equal to traditional fluxgate sensors with good linearity and RMS noise of less than 0.1 nT. From operational tests, the results are in good agreement with those from a standard fluxgate magnetometer. Being more suitable for modern dense deployment of geomagnetic observations, this small-size fluxgate sensor offers promising research applications at lower costs.


Meccanica ◽  
2021 ◽  
Author(s):  
S. Lovato ◽  
M. Massaro ◽  
D. J. N. Limebeer

AbstractThree-dimensional road models for vehicular minimum-lap-time manoeuvring are typically based on curvilinear coordinates and generalizations of the Frenet–Serret formulae. These models describe the road as a parametrized ‘ribbon’, which can be described in terms of three curvature variables. In this abstraction the road is assumed laterally flat. While this class of road models is appropriate in many situations, this is not always the case. In this research we extend the laterally-flat ribbon-type road model to include lateral curvature. This accommodates the case in which the road camber can change laterally across the track. Lateral-position-dependent camber is introduced as a generalisation that is required for some race tracks. A race track model with lateral curvature is constructed using high-resolution LiDAR measurement data. These ideas are demonstrated on a NASCAR raceway, which is characterized by large changes in lateral camber angle ($$\approx 10^\circ$$ ≈ 10 ∘ ) on some parts of the track. A free-trajectory optimization is employed to solve a minimum-lap-time optimal control problem. The calculations highlight the practically observed importance of lateral camber variations.


Sign in / Sign up

Export Citation Format

Share Document