scholarly journals Models & Searches of CPT Violation: a personal, very partial, list

2018 ◽  
Vol 166 ◽  
pp. 00005 ◽  
Author(s):  
Nick E. Mavromatos

In this talk, first I motivate theoretically, and then I review the phenomenology of, some models entailing CPT Violation (CPTV). The latter is argued to be responsible for the observed matter-antimatter asymmetry in the Cosmos, and may owe its origin to either Lorentz-violating background geometries, whose effects are strong in early epochs of the Universe but very weak today, being temperature dependent in general, or to an ill-defined CPT generator in some quantum gravity models entailing decoherence of quantum matter as a result of quantum degrees of freedom in the gravity sector that are inaccessible to the low-energy observers. In particular, for the latter category of CPTV, I argue that entangled states of neutral mesons (Kaons or B-systems), of central relevance to KLOE-2 experiment, can provide smoking-gun sensitive tests or even falsify some of these models. If CPT is ill-defined one may also encounter violations of the spin-statistics theorem, with possible consequences for the Pauli Exclusion Principle, which I only briefly touch upon.

2017 ◽  
Vol 14 (06) ◽  
pp. 1750095 ◽  
Author(s):  
Salvatore Capozziello ◽  
Emmanuel N. Saridakis ◽  
Kazuharu Bamba ◽  
Alireza Sepehri ◽  
Farook Rahaman ◽  
...  

An emergence of cosmic space has been suggested by Padmanabhan [Emergence and expansion of cosmic space as due to the quest for holographic equipartition, arXiv:hep-th/1206.4916] where he proposed that the expansion of the universe originates from a difference between the number of degrees of freedom on a holographic surface and the one in the emerged bulk. Now, a natural question that arises is how this proposal would explain the production of fermions and an emergence of the Pauli exclusion principle during the evolution of the universe? We try to address this issue in a system of [Formula: see text]-branes. In this model, there is a high symmetry and the system is composed of [Formula: see text]-branes to which only scalar fields are attached that represent scalar modes of the graviton. Then, when [Formula: see text]-branes join each other and hence form [Formula: see text]-branes, this symmetry is broken and gauge fields are formed. Therefore, these [Formula: see text]-branes interact with the anti-[Formula: see text]-branes and the force between them leads to a break of a symmetry such as the lower and upper parts of these branes are not the same. In these conditions, gauge fields which are localized on [Formula: see text]-branes and scalars which are attached to them symmetrically, decay to fermions with upper and lower spins which attach to the upper and lower parts of the [Formula: see text]-branes anti-symmetrically. The curvature produced by the coupling of identical spins has the opposite sign of the curvature produced by non-identical spins which lead to an attractive force between anti-parallel spins and a repelling force between parallel spins and hence an emergence of the Pauli exclusion principle. By approaching [Formula: see text]-branes to each other, the difference between curvatures of parallel spins and curvatures of anti-parallel spins increases, which leads to an inequality between the number of degrees of freedom on the surface and the one in the emerged bulk and hence lead to an occurrence of the cosmic expansion. By approaching [Formula: see text]-branes to each other, the square of the energy of the system becomes negative and hence tachyonic states arise. To remove these states, [Formula: see text]-branes compactify, the sign of gravity changes and anti-gravity emerges which leads to the branes moving away from each other. By joining [Formula: see text]-branes, [Formula: see text]-branes are produced which are similar to an initial system that oscillates between compacting and opening branches. Our universe is placed on one of these [Formula: see text]-branes and by changing the difference between the amount of couplings between identical and non-identical spins, it contracts or expands.


Author(s):  
Pawan Joshi ◽  
Utkarsh Kumar ◽  
Sukanta Panda

Nonlocal gravity models are constructed to explain the current acceleration of the universe. These models are inspired by the infrared correction appearing in Einstein–Hilbert action. Here, we develop the Hamiltonian formalism of a nonlocal model by considering only terms to quadratic order in Riemann tensor, Ricci tensor and Ricci scalar. We show how to count degrees of freedom using Hamiltonian formalism including Ricci tensor and Ricci scalar terms. In this model, we have also worked out with a choice of a nonlocal action which has only two degrees of freedom equivalent to GR. Finally, we find the existence of additional constraints in Hamiltonian required to remove the ghosts in our full action. We also compare our results with that of obtained using Lagrangian formalism.


2003 ◽  
Vol 68 (12) ◽  
pp. 2344-2354 ◽  
Author(s):  
Edyta Małolepsza ◽  
Lucjan Piela

A molecular surface defined as an isosurface of the valence repulsion energy may be hard or soft with respect to probe penetration. As a probe, the helium atom has been chosen. In addition, the Pauli exclusion principle makes the electronic structure change when the probe pushes the molecule (at a fixed positions of its nuclei). This results in a HOMO-LUMO gap dependence on the probe site on the isosurface. A smaller gap at a given probe position reflects a larger reactivity of the site with respect to the ionic dissociation.


Author(s):  
Norman J. Morgenstern Horing

Focusing on systems of many identical particles, Chapter 2 introduces appropriate operators to describe their properties in terms of Schwinger’s “measurement symbols.” The latter are then factorized into “creation” and “annihilation” operators, whose fundamental properties and commutation/anticommutation relations are derived in conjunction with the Pauli exclusion principle. This leads to “second quantization” with the Hamiltonian, number, linear and angular momentum operators expressed in terms of the annihilation and creation operators, as well as the occupation number representation. Finally, the concept of coherent states, as eigenstates of the annihilation operator, having minimum uncertainty, is introduced and discussed in detail.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay4213 ◽  
Author(s):  
Yang Hu ◽  
Fred Florio ◽  
Zhizhong Chen ◽  
W. Adam Phelan ◽  
Maxime A. Siegler ◽  
...  

Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(−)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI3. Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer–dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.


2015 ◽  
Vol 61 ◽  
pp. 552-559 ◽  
Author(s):  
H. Shi ◽  
S. Bartalucci ◽  
S. Bertolucci ◽  
C. Berucci ◽  
A.M. Bragadireanu ◽  
...  

Thermonuclear reactions provide the main source of radiated energy for stars and they are also believed to be responsible for the production of most of the heavy elements in the Universe. The thermonuclear plasma is confined by the force of gravitation and for most of a star’s history the reactions occur slowly and steadily. In some circumstances, the properties of a star change very rapidly and explosive nuclear reactions occur. In very dense stellar interiors the energy states available to electrons may be limited by the Pauli exclusion principle. When thermonuclear reactions start in such a degenerate gas, a rise in temperature is not accompanied by a significant rise in pressure and as a result there may be a runaway increase in reaction rate. In contrast, when reactions start in a non-degenerate gas, there is normally an effective thermostat. A star is usually opaque to reaction products, so that there is no problem in maintaining the reaction temperature, but at late stages of stellar evolution nuclear or elementary particle reactions may produce large numbers of neutrinos and antineutrinos that do escape.


2004 ◽  
Vol 13 (10) ◽  
pp. 2275-2279 ◽  
Author(s):  
J. A. R. CEMBRANOS ◽  
A. DOBADO ◽  
A. L. MAROTO

Extra-dimensional theories contain additional degrees of freedom related to the geometry of the extra space which can be interpreted as new particles. Such theories allow to reformulate most of the fundamental problems of physics from a completely different point of view. In this essay, we concentrate on the brane fluctuations which are present in brane-worlds, and how such oscillations of the own space–time geometry along curved extra dimensions can help to resolve the Universe missing mass problem. The energy scales involved in these models are low compared to the Planck scale, and this means that some of the brane fluctuations distinctive signals could be detected in future colliders and in direct or indirect dark matter searches.


Sign in / Sign up

Export Citation Format

Share Document