scholarly journals D meson semileptonic form factors in Nf = 3 QCD with Möbius domain-wall quarks

2018 ◽  
Vol 175 ◽  
pp. 13007 ◽  
Author(s):  
Takashi Kaneko ◽  
Brian Colquhoun ◽  
Hidenori Fukaya ◽  
Shoji Hashimoto

e present our calculation of D → π and D → K semileptonic form factors in Nf = 2 + 1 lattice QCD. We simulate three lattice cutoffs a-1 ≃ 2.5, 3.6 and 4.5 GeV with pion masses as low as 230 MeV. The Möbius domain-wall action is employed for both light and charm quarks. We present our results for the vector and scalar form factors and discuss their dependence on the lattice spacing, light quark masses and momentum transfer.

2001 ◽  
Vol 16 (supp01b) ◽  
pp. 585-587 ◽  
Author(s):  
MATTHEW WINGATE

Values for the strange quark mass and average up/down mass have been obtained from quenched lattice QCD simulations using the domain wall fermion action. This discretization preserves the properties of flavor and chiral symmetry at nonzero lattice spacing. Results are shown for two values of the lattice spacing. The mass renormalization constant is computed nonperturbatively.


2018 ◽  
Vol 175 ◽  
pp. 13027 ◽  
Author(s):  
Bipasha Chakraborty ◽  
Christine Davies ◽  
Jonna Koponen ◽  
G Peter Lepage

he quark flavor sector of the Standard Model is a fertile ground to look for new physics effects through a unitarity test of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. We present a lattice QCD calculation of the scalar and the vector form factors (over a large q2 region including q2 = 0) associated with the D→ Klv semi-leptonic decay. This calculation will then allow us to determine the central CKM matrix element, Vcs in the Standard Model, by comparing the lattice QCD results for the form factors and the experimental decay rate. This form factor calculation has been performed on the Nf = 2 + 1 + 1 MILC HISQ ensembles with the physical light quark masses.


2016 ◽  
Vol 2016 (12) ◽  
Author(s):  
Gavin K.C. Cheung ◽  
◽  
Cian O’Hara ◽  
Graham Moir ◽  
Michael Peardon ◽  
...  
Keyword(s):  
D Meson ◽  

2018 ◽  
Vol 175 ◽  
pp. 06015 ◽  
Author(s):  
Jonna Koponen ◽  
André Zimermmane-Santos ◽  
Christine Davies ◽  
G. Peter Lepage ◽  
Andrew Lytle

Measurements and theoretical calculations of meson form factors are essential for our understanding of internal hadron structure and QCD, the dynamics that bind the quarks in hadrons. The pion electromagnetic form factor has been measured at small space-like momentum transfer |q2| < 0.3 GeV2 by pion scattering from atomic electrons and at values up to 2.5 GeV2 by scattering electrons from the pion cloud around a proton. On the other hand, in the limit of very large (or infinite) Q2 = −q2, perturbation theory is applicable. This leaves a gap in the intermediate Q2 where the form factors are not known. As a part of their 12 GeV upgrade Jefferson Lab will measure pion and kaon form factors in this intermediate region, up to Q2 of 6 GeV2. This is then an ideal opportunity for lattice QCD to make an accurate prediction ahead of the experimental results. Lattice QCD provides a from-first-principles approach to calculate form factors, and the challenge here is to control the statistical and systematic uncertainties as errors grow when going to higher Q2 values. Here we report on a calculation that tests the method using an ηs meson, a ’heavy pion’ made of strange quarks, and also present preliminary results for kaon and pion form factors. We use the nf = 2 + 1 + 1 ensembles made by the MILC collaboration and Highly Improved Staggered Quarks, which allows us to obtain high statistics. The HISQ action is also designed to have small dicretisation errors. Using several light quark masses and lattice spacings allows us to control the chiral and continuum extrapolation and keep systematic errors in check.


2016 ◽  
Author(s):  
Thomas Primer ◽  
Doug Toussaint ◽  
Claude Bernard ◽  
Javad Komijani ◽  
Carleton DeTar ◽  
...  

2015 ◽  
Vol 2015 (6) ◽  
Author(s):  
P. A. Boyle ◽  
◽  
N. H. Christ ◽  
J. M. Flynn ◽  
N. Garron ◽  
...  

2018 ◽  
Vol 175 ◽  
pp. 13008 ◽  
Author(s):  
Yuzhi Liu ◽  
Jon A. Bailey ◽  
A. Bazavov ◽  
C. Bernard ◽  
C. M. Bouchard ◽  
...  

Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors f0 and f+ for the semileptonic Bs → Kℓv decay. A total of six ensembles with lattice spacing from ≈ 0.12 to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass m’l is one-tenth the strange quark mass m’s. At the intermediate lattice spacing, the ratio m’l/m’s ranges from 0.05 to 0.2. The valence b quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element |Vub|.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gavin K. C. Cheung ◽  
◽  
Christopher E. Thomas ◽  
David J. Wilson ◽  
Graham Moir ◽  
...  

Abstract Elastic scattering amplitudes for I = 0 DK and I = 0, 1 $$ D\overline{K} $$ D K ¯ are computed in S, P and D partial waves using lattice QCD with light-quark masses corresponding to mπ = 239 MeV and mπ = 391 MeV. The S-waves contain interesting features including a near-threshold JP = 0+ bound state in I = 0 DK, corresponding to the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ (2317), with an effect that is clearly visible above threshold, and suggestions of a 0+ virtual bound state in I = 0 $$ D\overline{K} $$ D K ¯ . The S-wave I = 1 $$ D\overline{K} $$ D K ¯ amplitude is found to be weakly repulsive. The computed finite-volume spectra also contain a deeply-bound D* vector resonance, but negligibly small P -wave DK interactions are observed in the energy region considered; the P and D-wave $$ D\overline{K} $$ D K ¯ amplitudes are also small. There is some evidence of 1+ and 2+ resonances in I = 0 DK at higher energies.


Sign in / Sign up

Export Citation Format

Share Document