strange quarks
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 15)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Ankita Goswami ◽  
Ranjit Nayak ◽  
Basanta Kumar Nandi ◽  
Sadhana Dash

AbstractResonance production in proton–proton collisions at $$\sqrt{s} = 7$$ s = 7 TeV and 13 TeV have been investigated using a Pythia 8 event generator within the framework of microscopic processes including color reconnection and rope hadronization. Specifically, the observable effects of different modes of color reconnections on the ratio of yields of mesonic and baryonic resonances with respect to their stable counterpart have been explored as a function of mean charged particle multiplicity. A suppression in the ratio is observed as a function of the mean number of charged particles for mesonic resonances. The $$\phi /\mathrm {K}$$ ϕ / K and $${\phi /\pi }$$ ϕ / π ratios show an enhancement for high-multiplicity events due to enhanced production of strange quarks via the microscopic process of rope hadronization in the partonic phase. The mechanism of the hadronization of color ropes together with the quark–gluon plasma (QCD)-based color reconnection of partons predicted an enhancement in the ratio for baryonic resonances to non-resonance baryons having similar quark content. The yield ratios of resonances are found to be independent of the collision energy and strongly dependent on event activity.


2021 ◽  
Vol 2021 (11) ◽  
pp. 040
Author(s):  
Mihaela Pârvu ◽  
Ionel Lazanu

Abstract Predicted as possible bound states of up, down and strange quarks, strangelets could be more energetically favourable and more stable than nuclear matter. In this paper we explore the possibility of detecting such particles with the future large liquid argon detectors developed for neutrino physics. Using signals from ionization and scintillation, as well as measuring the range, we suggest that a calorimetric TPC detector is able to put in evidence and to discriminate between light strangelets and normal isotopes at intermediate energies.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
A. E. Cárcamo Hernández ◽  
Sergey Kovalenko ◽  
M. Maniatis ◽  
Ivan Schmidt

Abstract We propose an extension of the three-Higgs-doublet model (3HDM), where the Standard Model (SM) particle content is enlarged by the inclusion of two inert SU2L scalar doublets, three inert and two active electrically neutral gauge singlet scalars, charged vector like fermions and Majorana neutrinos. These additional particles are introduced to generate the SM fermion mass hierarchy from a sequential loop suppression mechanism. In our model the top and exotic fermion masses appear at tree level, whereas the remaining fermions get their masses radiatively. Specifically, bottom, charm, tau and muon masses appear at 1-loop; the masses for the light up, down and strange quarks as well as for the electron at 2-loop and masses for the light active neutrinos at 3-loop. Our model successfully accounts for SM fermion masses and mixings and accommodates the observed Dark Matter relic density, the electron and muon anomalous magnetic moments, as well the constraints arising from charged Lepton Flavor Violating (LFV) processes. The proposed model predicts charged LFV decays within the reach of forthcoming experiments.


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 35
Author(s):  
J. Pace VanDevender ◽  
Aaron P. VanDevender ◽  
Peter Wilson ◽  
Benjamin F. Hammel ◽  
Niall McGinley

A quark nugget is a hypothetical dark-matter candidate composed of approximately equal numbers of up, down, and strange quarks. Most models of quark nuggets do not include effects of their intrinsic magnetic field. However, Tatsumi used a mathematically tractable approximation of the Standard Model of Particle Physics and found that the cores of magnetar pulsars may be quark nuggets in a ferromagnetic liquid state with surface magnetic field Bo = 1012±1 T. We have applied that result to quark-nugget dark matter. Previous work addressed the formation and aggregation of magnetized quark nuggets (MQNs) into a broad and magnetically stabilized mass distribution before they could decay and addressed their interaction with normal matter through their magnetopause, losing translational velocity while gaining rotational velocity and radiating electromagnetic energy. The two orders of magnitude uncertainty in Tatsumi’s estimate for Bo precludes the practical design of systematic experiments to detect MQNs through their predicted interaction with matter. In this paper, we examine episodic events consistent with a unique signature of MQNs. If they are indeed caused by MQNs, they constrain the most likely values of Bo to 1.65 × 1012 T +/− 21% and support the design of definitive tests of the MQN dark-matter hypothesis.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
A. E. Cárcamo Hernández ◽  
Yocelyne Hidalgo Velásquez ◽  
Sergey Kovalenko ◽  
H. N. Long ◽  
Nicolás A. Pérez-Julve ◽  
...  

AbstractWe propose a renormalizable theory based on the $$SU(3)_C\times SU(3)_L\times U(1)_X$$ S U ( 3 ) C × S U ( 3 ) L × U ( 1 ) X gauge symmetry, supplemented by the spontaneously broken $$U(1)_{L_g}$$ U ( 1 ) L g global lepton number symmetry and the $$S_3 \times Z_2 $$ S 3 × Z 2 discrete group, which successfully describes the observed SM fermion mass and mixing hierarchy. In our model the top and exotic quarks get tree level masses, whereas the bottom, charm and strange quarks as well as the tau and muon leptons obtain their masses from a tree level Universal seesaw mechanism thanks to their mixing with charged exotic vector like fermions. The masses for the first generation SM charged fermions are generated from a radiative seesaw mechanism at one loop level. The light active neutrino masses are produced from a loop level radiative seesaw mechanism. Our model successfully accommodates the experimental values for electron and muon anomalous magnetic dipole moments.


2021 ◽  
Author(s):  
◽  
Nicolas Schmidt

Während den ersten Mikrosekunden nach dem Urknall glaubt man, dass unser Universum aus einer heißen, dichten und stark wechselwirkenden Materie bestanden haben soll, welche man das Quark-Gluonen-Plasma (QGP) nennt. In diesem Medium sind die elementaren Bausteine der Materie, die Quarks und die Gluonen, nicht mehr in Hadronen gebunden, sondern können sich stattdessen wie quasi-freie Teilchen verhalten. Für die ALICE Kollaboration an CERN's Large Hadron Collider (LHC) ist die Untersuchung dieses Mediums eines der Hauptziele. Um dieses Medium im Labor zu erzeugen, werden Protonen und Nukleonen auf nahezu Lichtgeschwindigkeit beschleunigt und anschließend zur Kollision gebracht. Dabei werden Schwerpunktsenergien von bis zu 13 TeV bei Proton-Proton (pp) Kollisionen und bis zu 5.02 TeV bei Blei-Blei (Pb--Pb) Kollisionen erreicht. Bei solchen hochenergetischen Kollisionen werden die kritischen Werte der Energiedichte und Temperatur von jeweils ungefähr 1 GeV/c und undgefähr 155 MeV überschritten, welche mithilfe von "lattice QCD" bestimmt wurden. Sie bieten daher die perfekten Voraussetzungen für einen Phasenübergang von normaler Materie zu einem QGP. Die Entwicklung eines solchen Mediums, beginnend bei der eigentlichen Kollision, gefolgt von der Ausbildung des Plasmas und der letztendlichen Hadronisierung, kann jedoch nicht direkt untersucht werden, da das Plasma eine extrem kurze Lebensdauer hat. Die Studien die das QGP untersuchen möchten, müssen sich deshalb auf Teilchenmessungen und deren Veränderung aufgrund von Einflüssen durch das Medium beschränken. Es ist noch nicht definitiv geklärt, ob sich ein QGP nur in Kollisionen schwerer Ionen bildet, oder ob dies auch in kleineren Kollisionssystemen wie Proton-Proton oder Proton-Blei der Fall ist. Damit in dieser Thesis Einschränkungen bezüglich einer möglichen Erzeugung eines mini-GQP in kleinen Kollisionssystemen gemacht werden kann, wird der Fokus auf Messungen von neutralen Pionen und Eta Mesonen mit dem ALICE Detektor am CERN LHC gesetzt. Hierfür wird in einem Referenzsystem von Proton-Proton Kollisionen bei sqrt(s)=8 TeV und in einem Proton-Blei (p--Pb) System bei sqrt(sNN)=8.16 TeV, welches eine nukleare Modifikation erfährt, gemessen und die Ergebnisse verglichen. Da in Proton-Proton Kollisionen die Bildung eines QGP, aufgrund zu geringer Energiedichte, nicht erwartet wird, dient eine Messung in diesem System als Messbasis, um Effekte der Kollision selbst von Effekten nach der Kollision zu separieren, welche die Teilchenproduktion beeinflussen. Teilchen können zusätzlich zu dem QGP auch mit kalter Kernmaterie interagieren, was sich in asymmetrischen Proton-Blei Kollisionen testen lässt. In diesem Kollisionssystem wird größtenfalls ein vergleichsweise kleines QGP gebildet, wohingegen das Blei Ion selbst als kalte Kernmaterie agieren kann. Zusätzlich zu den Mesonenmessungen wird in dieser Thesis auch die Erzeugung von direkten Photonen bei niedrigen Transversalimpulsen (pT) in multiplizitätsabhängigen p--Pb Kollisionen bei einer Schwerpunktsenergie von sNN=5.02 TeV gemessen, welche als direkte Probe, sowie als charakteristisches Signal des QGP gilt. Die neutralen Pionen, welche in dieser Thesis gemessen werden, kann man als einen Überlagerungszustand der zwei leichtesten Quarksorten, dem "up" (u) und dem "down" (d) Quark, sowie deren entsprechenden Anti-Teilchen verstehen. Das eta meson hingegen hat einen zusätzlichen Anteil des "strange" Quarks und eine resultierende höhere Masse. Quarks sind Teil des Standardmodells der Teilchenphysik, welches die Elementarteilchen und die zwischen ihnen wirkenden Elementarkräfte, ausgeübt durch Bosonen, beschreibt. Das Modell umfasst insgesamt sechs Quarks, welche sich durch ihre Masse und Ladung unterscheiden und als Grundbestandteil von gebundenen Zuständen, sogenannten Hadronen, fungieren. Die "up" und "down" Quarks gelten hierbei als die leichtesten Quarks und kommen daher am häufigsten in der Natur vor. Das bekannteste Beipiel stellen hier die allgemein bekannten Protonen (uud) und Neutronen (udd) dar, welche die Grundkomponenten von Nukleonen sind. Die restlichen Quarks tragen eine deutlich höhere Masse und haben daher eine große Tendenz, sich in leichtere Quarks umzuwandeln, wodurch ihre Lebensdauer sehr gering ist. Die "top" und "bottom" Quarks, welche die Schwersten sind, können daher nicht in gewöhnlicher Materie gefunden werden. Sie können jedoch experimentell durch hoch energetische Teilchenkollisionen erzeugt werden und indirekt über ihre Zerfallsprodukte nachgewiesen werden. Quarks tragen eine elektrische Ladung von entweder 1/3 oder 2/3, sowie eine Farbladung, wobei Letztere verantwortlich für ihre Bindung in Hadronen ist. Hadronen bestehen entweder aus drei Quarks, dann werden sie Baryonen genannt, oder aus einem Quark-Antiquark Paar, welches Meson genannt wird. Diese gebundenen Zustände erfüllen eine insgesamt neutrale Farbladung, sowie eine vollzählige elektrische Ladung. Des Weiteren gibt es auch exotische Penta-Quark Zustände, welche aus vier Quarks und einem Antiquark bestehen und bereits experimentell nachgewiesen wurden. Aufgrund der starken Wechselwirkung, welche durch Gluonen vermittelt wird, können Quarks nicht einzeln beobachtet werden. ...


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Jun Song ◽  
Hai-hong Li ◽  
Feng-lan Shao

AbstractWe apply a quark combination model with equal-velocity combination (EVC) approximation to study the elliptic flow ($$v_{2}$$ v 2 ) of hadrons in heavy-ion collisions in a wide collision energy range ($$\sqrt{s_{NN}}=$$ s NN = 27–5020 GeV). Utilizing the simple relationship between $$v_{2}$$ v 2 of hadrons and those of quarks under EVC, we find that $$v_{2}$$ v 2 of up/down quarks obtained by experimental data of proton is consistent with that obtained by data of $$\varLambda $$ Λ and $$\varXi $$ Ξ . $$v_{2}$$ v 2 of strange quarks obtained by data of $$\varOmega $$ Ω is consistent with that obtained by data of $$\varLambda $$ Λ and $$\varXi $$ Ξ , and at RHIC energies it is also consistent with that obtained by data of $$\phi $$ ϕ . This means that $$v_{2}$$ v 2 of these hadrons have a common quark-level source. Using data of $$D^0$$ D 0 , we obtain $$v_{2}$$ v 2 of charm quarks with $$p_T\lesssim 6$$ p T ≲ 6 GeV/c. We find that under EVC charm quark dominates $$v_{2}$$ v 2 of D mesons at low $$p_{T}$$ p T but light-flavor quarks significantly contribute to $$v_{2}$$ v 2 of D mesons in the range $$3\lesssim p_{T}\lesssim 8$$ 3 ≲ p T ≲ 8 GeV/c. We predict $$v_{2}$$ v 2 of charmed baryons $$\varLambda _{c}^{+}$$ Λ c + and $$\varXi _{c}^{0}$$ Ξ c 0 which show a significant enhancement at intermediate $$p_{T}$$ p T due to the double contribution of light-flavor quarks. The properties of the obtained quark $$v_{2}$$ v 2 under EVC are studied and a regularity for $$v_{2}$$ v 2 of quarks as the function of $$p_{T}/m$$ p T / m is found.


Author(s):  
J. Pace VanDevender ◽  
Aaron P. VanDevender ◽  
Peter Wilson ◽  
Benjamin F. Hammel ◽  
Niall McGinley

A quark nugget is a hypothetical dark-matter candidate composed of approximately equal numbers of up, down, and strange quarks. Most models of quark nuggets do not include effects of their intrinsic magnetic field. However, Tatsumi used a mathematically tractable approximation of the Standard Model of Particle Physics and found that the cores of magnetar pulsars may be quark-nuggets in a ferromagnetic-liquid state with surface magnetic field Bo = $10^(12±1) T. We have applied that result to quark-nugget dark matter. Previous work addressed the formation and aggregation of magnetized quark nuggets (MQNs) into a broad and magnetically stabilized mass distribution before they could decay and addressed their interaction with normal matter through their magnetopause, losing translational velocity while gaining rotational velocity and radiating electromagnetic energy. The two orders of magnitude uncertainty in Tatsumi’s estimate for Bo precludes the practical design of systematic experiments to detect MQNs through their predicted interaction with matter. In this paper, we examine episodic events consistent with a unique signature of MQNs. If they are indeed caused by MQNs, they constrain the most likely values of Bo = 1.65 × 10^12 T +/- 21% and support the design of definitive tests of the MQN dark-matter hypothesis.


Nature ◽  
2020 ◽  
Vol 588 (7837) ◽  
pp. 232-238
Author(s):  

AbstractOne of the key challenges for nuclear physics today is to understand from first principles the effective interaction between hadrons with different quark content. First successes have been achieved using techniques that solve the dynamics of quarks and gluons on discrete space-time lattices1,2. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons3–6 and so high-quality measurements exist only for hadrons containing up and down quarks7. Here we demonstrate that measuring correlations in the momentum space between hadron pairs8–12 produced in ultrarelativistic proton–proton collisions at the CERN Large Hadron Collider (LHC) provides a precise method with which to obtain the missing information on the interaction dynamics between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of baryons containing strange quarks (hyperons). We demonstrate how, using precision measurements of proton–omega baryon correlations, the effect of the strong interaction for this hadron–hadron pair can be studied with precision similar to, and compared with, predictions from lattice calculations13,14. The large number of hyperons identified in proton–proton collisions at the LHC, together with accurate modelling15 of the small (approximately one femtometre) inter-particle distance and exact predictions for the correlation functions, enables a detailed determination of the short-range part of the nucleon-hyperon interaction.


Sign in / Sign up

Export Citation Format

Share Document