partial waves
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 26)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 88 (3) ◽  
pp. 295-311
Author(s):  
P. SAHOO ◽  
U. LAHA ◽  
B. KHIRALI ◽  
A.K. BEHERA

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1434
Author(s):  
Albert Feijoo ◽  
Daniel Gazda ◽  
Volodymyr Magas ◽  
Àngels Ramos

We present a chiral K¯N interaction model that has been developed and optimized in order to account for the experimental data of inelastic K¯N reaction channels that open at higher energies. In particular, we study the effect of the higher partial waves, which originate directly from the chiral Lagrangian, as they could supersede the role of high-spin resonances employed in earlier phenomenological models to describe meson-baryon cross sections in the 2 GeV region. We present a detailed derivation of the partial wave amplitudes that emerge from the chiral SU(3) meson-baryon Lagrangian up to the d-waves and next-to-leading order in the chiral expansion. We implement a nonperturbative unitarization in coupled channels and optimize the model parameters to a large pool of experimental data in the relevant energy range where these new contributions are expected to be important. The obtained results are encouraging. They indicate the ability of the chiral higher partial waves to extend the description of the scattering data to higher energies and to account for structures in the reaction cross-sections that cannot be accommodated by theoretical models limited to the s-waves.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Yifei He ◽  
Martin Kruczenski

Abstract The S-matrix bootstrap maps out the space of S-matrices allowed by analyticity, crossing, unitarity, and other constraints. For the 2 → 2 scattering matrix S2→2 such space is an infinite dimensional convex space whose boundary can be determined by maximizing linear functionals. On the boundary interesting theories can be found, many times at vertices of the space. Here we consider 3 + 1 dimensional theories and focus on the equivalent dual convex minimization problem that provides strict upper bounds for the regularized primal problem and has interesting practical and physical advantages over the primal problem. Its variables are dual partial waves kℓ(s) that are free variables, namely they do not have to obey any crossing, unitarity or other constraints. Nevertheless they are directly related to the partial waves fℓ(s), for which all crossing, unitarity and symmetry properties result from the minimization. Numerically, it requires only a few dual partial waves, much as one wants to possibly match experimental results. We consider the case of scalar fields which is related to pion physics.


2021 ◽  
Vol 20 (1) ◽  
pp. 35-43
Author(s):  
Sergiu Cojocaru ◽  

An approach to describing normal elastic vibration modes in confined systems is presented. In a standard treatment of the problem, the displacement field is represented by a superposition of partial waves of a general form, e.g., plane waves. The unknown coefficients of superposition are then obtained from the equation of motion and the full set of boundary conditions. In the proposed approach, the functional form of partial waves is chosen in such a way as to satisfy the boundary conditions on exterior surfaces identically, i.e., even if the unknown quantities determined by the remaining constraints are found in an approximation, numerically or analytically. Some examples of solutions for composite elastic plates are discussed to illustrate the efficiency of the approach and its relevance for applications.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1009
Author(s):  
Enrico De Micheli

In this paper, we consider the inverse scattering problem and, in particular, the problem of reconstructing the spectral density associated with the Yukawian potentials from the sequence of the partial-waves fℓ of the Fourier–Legendre expansion of the scattering amplitude. We prove that if the partial-waves fℓ satisfy a suitable Hausdorff-type condition, then they can be uniquely interpolated by a function f˜(λ)∈C, analytic in a half-plane. Assuming also the Martin condition to hold, we can prove that the Fourier–Legendre expansion of the scattering amplitude converges uniformly to a function f(θ)∈C (θ being the complexified scattering angle), which is analytic in a strip contained in the θ-plane. This result is obtained mainly through geometrical methods by replacing the analysis on the complex cosθ-plane with the analysis on a suitable complex hyperboloid. The double analytic symmetry of the scattering amplitude is therefore made manifest by its analyticity properties in the λ- and θ-planes. The function f(θ) is shown to have a holomorphic extension to a cut-domain, and from the discontinuity across the cuts we can iteratively reconstruct the spectral density σ(μ) associated with the class of Yukawian potentials. A reconstruction algorithm which makes use of Pollaczeck and Laguerre polynomials is finally given.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Marc Gillioz

The decomposition of 4-point correlation functions into conformal partial waves is a central tool in the study of conformal field theory. We compute these partial waves for scalar operators in Minkowski momentum space, and find a closed-form result valid in arbitrary space-time dimension d \geq 3d≥3 (including non-integer dd). Each conformal partial wave is expressed as a sum over ordinary spin partial waves, and the coefficients of this sum factorize into a product of vertex functions that only depend on the conformal data of the incoming, respectively outgoing operators. As a simple example, we apply this conformal partial wave decomposition to the scalar box integral in d = 4d=4 dimensions.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pietro Baratella ◽  
Clara Fernandez ◽  
Benedict von Harling ◽  
Alex Pomarol

Abstract On-shell amplitude methods have proven to be extremely efficient for calculating anomalous dimensions. We further elaborate on these methods to show that, by the use of an angular momentum decomposition, the one-loop anomalous dimensions can be reduced to essentially a sum of products of partial waves. We apply this to the SM EFT, and show how certain classes of anomalous dimensions have their origin in the same partial-wave coefficients. We also use our result to obtain a generic formula for the one-loop anomalous dimensions of nonlinear sigma models at any order in the energy expansion, and apply our method to gravity, where it proves to be very advantageous even in the presence of IR divergencies.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Gavin K. C. Cheung ◽  
◽  
Christopher E. Thomas ◽  
David J. Wilson ◽  
Graham Moir ◽  
...  

Abstract Elastic scattering amplitudes for I = 0 DK and I = 0, 1 $$ D\overline{K} $$ D K ¯ are computed in S, P and D partial waves using lattice QCD with light-quark masses corresponding to mπ = 239 MeV and mπ = 391 MeV. The S-waves contain interesting features including a near-threshold JP = 0+ bound state in I = 0 DK, corresponding to the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ (2317), with an effect that is clearly visible above threshold, and suggestions of a 0+ virtual bound state in I = 0 $$ D\overline{K} $$ D K ¯ . The S-wave I = 1 $$ D\overline{K} $$ D K ¯ amplitude is found to be weakly repulsive. The computed finite-volume spectra also contain a deeply-bound D* vector resonance, but negligibly small P -wave DK interactions are observed in the energy region considered; the P and D-wave $$ D\overline{K} $$ D K ¯ amplitudes are also small. There is some evidence of 1+ and 2+ resonances in I = 0 DK at higher energies.


Sign in / Sign up

Export Citation Format

Share Document