charm quarks
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 28)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Renqiang 张仁强 Zhang ◽  
Ying Chen ◽  
Wei Sun ◽  
Zhaofeng Liu ◽  
Ming Gong ◽  
...  

Abstract In this work, we generate gauge configurations with $N_f=2$ dynamical charm quarks on anisotropic lattices. The mass shift of $1S$ and $1P$ charmonia owing to the charm quark annihilation effect can be investigated directly in a manner of unitary theory. The distillation method is adopted to treat the charm quark annihilation diagrams at a very precise level. For $1S$ charmonia, the charm quark annihilation effect almost does not change the $J/\psi$ mass, but lifts the $\eta_c$ mass by approximately 3-4 MeV. For $1P$ charmonia, this effect results in positive mass shifts of approximately 1 MeV for $\chi_{c1}$ and $h_c$, but decreases the $\chi_{c2}$ mass by approximately 3 MeV. We have not obtain a reliable result for the mass shift of $\chi_{c0}$. In addition, it is observed that the spin averaged mass of the spin-triplet $1P$ charmonia is in a good agreement with the $h_c$, as expected by the non-relativistic quark model and measured by experiments. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Sumit Basu ◽  
Peter Christiansen ◽  
Alice Ohlson ◽  
David Silvermyr

AbstractRecent theoretical explanations for how hydrodynamic-like flow can build up quickly in small collision systems (hydrodynamization) has led to a microscopic picture of flow building up in a gluon-dominated phase before chemical equilibrium between quarks and gluons has been attained. The goal of this contribution to Offshell-2021 is to explore consequence of assuming a long-lived gluon-dominated phase, which we shall denote a gluon plasma (GP). As these consequences are naturally enhanced in a large systems, we assume and explore the extreme scenario in which a GP would be created in AA collisions and exist for significant time before the formation of a chemically-equilibrated quark-gluon plasma (QGP). The GP and its formation would be impossible to probe with light-quark hadrons, which are first produced later in this scenario. As charm quarks are produced early in the collision, they can circumvent the limitations of light quarks and we propose charm balance functions as an effective tool to test this idea and constrain the dynamics of the GP.


2021 ◽  
Author(s):  
Ivan Belyaev

Abstract Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. The observation of a new type of hadronic state, a doubly charmed tetraquark containing two charm quarks, an anti-u and an anti-d quark, is reported using data collected by the LHCb experiment at the Large Hadron Collider. This exotic state with a mass of about 3875 MeV/c 2 manifests itself as a narrow peak in the mass spectrum of D0D0π + mesons just below the D∗+D0 mass threshold. The near-threshold mass together with a strikingly narrow width reveals the resonance nature of the state.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Salvatore Calì ◽  
Kevin Eckert ◽  
Jochen Heitger ◽  
Francesco Knechtli ◽  
Tomasz Korzec

AbstractWe estimate the effects on the decay constants of charmonium and on heavy meson masses due to the charm quark in the sea. Our goal is to understand whether for these quantities $${N_\mathrm{f}}=2+1$$ N f = 2 + 1 lattice QCD simulations provide results that can be compared with experiments or whether $${N_\mathrm{f}}=2+1+1$$ N f = 2 + 1 + 1 QCD including the charm quark in the sea needs to be simulated. We consider two theories, $${N_\mathrm{f}}=0$$ N f = 0 QCD and QCD with $${N_\mathrm{f}}=2$$ N f = 2 charm quarks in the sea. The charm sea effects (due to two charm quarks) are estimated comparing the results obtained in these two theories, after matching them and taking the continuum limit. The absence of light quarks allows us to simulate the $${N_\mathrm{f}}=2$$ N f = 2 theory at lattice spacings down to 0.023 fm that are crucial for reliable continuum extrapolations. We find that sea charm quark effects are below 1% for the decay constants of charmonium. Our results show that decoupling of charm works well up to energies of about 500 MeV. We also compute the derivatives of the decay constants and meson masses with respect to the charm mass. For these quantities we again do not see a significant dynamical charm quark effect, albeit with a lower precision. For mesons made of a charm quark and a heavy antiquark, whose mass is twice that of the charm quark, sea effects are only about 1‰ in the ratio of vector to pseudoscalar masses.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Anton Andronic ◽  
Peter Braun-Munzinger ◽  
Markus K. Köhler ◽  
Aleksas Mazeliauskas ◽  
Krzysztof Redlich ◽  
...  

Abstract In relativistic nuclear collisions the production of hadrons with light (u,d,s) quarks is quantitatively described in the framework of the Statistical Hadronization Model (SHM). Charm quarks are dominantly produced in initial hard collisions but interact strongly in the hot fireball and thermalize. Therefore charmed hadrons can be incorporated into the SHM by treating charm quarks as ‘impurities’ with thermal distributions, while the total charm content of the fireball is fixed by the measured open charm cross section. We call this model SHMc and demonstrate that with SHMc the measured multiplicities of single charm hadrons in lead-lead collisions at LHC energies can be well described with the same thermal parameters as for (u,d,s) hadrons. Furthermore, transverse momentum distributions are computed in a blast-wave model, which includes the resonance decay kinematics. SHMc is extended to lighter collision systems down to oxygen-oxygen and includes doubly- and triply-charmed hadrons. We show predictions for production probabilities of such states exhibiting a characteristic and quite spectacular enhancement hierarchy.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Wojciech Bizoń ◽  
Kirill Melnikov ◽  
Jérémie Quarroz

Abstract Higgs boson production in association with a charm-quark jet proceeds through two different mechanisms — one that involves the charm Yukawa coupling and the other that involves direct Higgs coupling to gluons. The interference of the two contributions requires a helicity flip and, therefore, cannot be computed with massless charm quarks. In this paper, we consider QCD corrections to the interference contribution starting from charm-gluon collisions with massive charm quarks and taking the massless limit, mc→ 0. The behavior of QCD cross sections in that limit differs from expectations based on the canonical QCD factorization. This implies that QCD corrections to the interference term necessarily involve logarithms of the ratio MH/mc whose resummation is currently unknown. Although the explicit next-to-leading order QCD computation does confirm the presence of up to two powers of ln(MH/mc) in the interference contribution, their overall impact on the magnitude of QCD corrections to the interference turns out to be moderate due to a cancellation between double and single logarithmic terms.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lucia Oliva ◽  
Salvatore Plumari ◽  
Vincenzo Greco

Abstract We present a study of the directed flow v1 for D mesons discussing both the impact of initial vorticity and electromagnetic field. Recent studies predicted that v1 for D mesons is expected to be surprisingly much larger than that of light charged hadrons; we clarify that this is due to a different mechanism leading to the formation of a directed flow with respect to the one of the bulk matter at both relativistic and non-relativistic energies. We point out that the very large v1 for D mesons can be generated only if there is a longitudinal asymmetry between the bulk matter and the charm quarks and if the latter have a large non-perturbative interaction in the QGP medium. A quite good agreement with the data of STAR and ALICE is obtained if the diffusion coefficient able to correctly predict the RAA(pT), v2(pT) and v3(pT) of D meson is employed. Furthermore, the mechanism for the build-up of the v1(y) is associated to a quite small formation time that can be expected to be more sensitive to the initial high-temperature dependence of the charm diffusion coefficient.We discuss also the splitting of v1 for D0 and $$ {\overline{D}}^0 $$ D ¯ 0 due to the electromagnetic field that is again much larger than the one observed for charged particles and in agreement with the data by STAR that have however still error bars comparable with the splitting itself, while at LHC standard electromagnetic profile assuming a constant conductivity is not able to account for the huge splitting observed.


2021 ◽  
Vol 1005 ◽  
pp. 121787
Author(s):  
Sa Wang ◽  
Wei Dai ◽  
Jun Yan ◽  
Ben-Wei Zhang ◽  
Enke Wang

2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Jun Song ◽  
Hai-hong Li ◽  
Feng-lan Shao

AbstractWe apply a quark combination model with equal-velocity combination (EVC) approximation to study the elliptic flow ($$v_{2}$$ v 2 ) of hadrons in heavy-ion collisions in a wide collision energy range ($$\sqrt{s_{NN}}=$$ s NN = 27–5020 GeV). Utilizing the simple relationship between $$v_{2}$$ v 2 of hadrons and those of quarks under EVC, we find that $$v_{2}$$ v 2 of up/down quarks obtained by experimental data of proton is consistent with that obtained by data of $$\varLambda $$ Λ and $$\varXi $$ Ξ . $$v_{2}$$ v 2 of strange quarks obtained by data of $$\varOmega $$ Ω is consistent with that obtained by data of $$\varLambda $$ Λ and $$\varXi $$ Ξ , and at RHIC energies it is also consistent with that obtained by data of $$\phi $$ ϕ . This means that $$v_{2}$$ v 2 of these hadrons have a common quark-level source. Using data of $$D^0$$ D 0 , we obtain $$v_{2}$$ v 2 of charm quarks with $$p_T\lesssim 6$$ p T ≲ 6 GeV/c. We find that under EVC charm quark dominates $$v_{2}$$ v 2 of D mesons at low $$p_{T}$$ p T but light-flavor quarks significantly contribute to $$v_{2}$$ v 2 of D mesons in the range $$3\lesssim p_{T}\lesssim 8$$ 3 ≲ p T ≲ 8 GeV/c. We predict $$v_{2}$$ v 2 of charmed baryons $$\varLambda _{c}^{+}$$ Λ c + and $$\varXi _{c}^{0}$$ Ξ c 0 which show a significant enhancement at intermediate $$p_{T}$$ p T due to the double contribution of light-flavor quarks. The properties of the obtained quark $$v_{2}$$ v 2 under EVC are studied and a regularity for $$v_{2}$$ v 2 of quarks as the function of $$p_{T}/m$$ p T / m is found.


Author(s):  
Fabio Catalano

Open-charmed mesons are unique tools to study the properties of the Quark–Gluon Plasma (QGP) formed in ultra-relativistic nucleus–nucleus collisions. The nuclear modification factor ([Formula: see text]) and elliptic flow ([Formula: see text]) of [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] mesons were measured by the ALICE Collaboration in Pb–Pb collisions at [Formula: see text]. The D-meson [Formula: see text] provides information on the charm-quark interactions with the medium and the charm-quark energy loss. The D-meson elliptic flow at low transverse momentum ([Formula: see text]) gives insight into the participation of charm quarks in the collective expansion of the system and their possible in-medium thermalization. At high [Formula: see text], the [Formula: see text] is sensitive to the path-length dependence of parton energy loss. The role of the recombination mechanism is investigated measuring the [Formula: see text]-differential yield ratios between D-meson species with and without strange-quark content. Finally, the coupling of charm quarks to light quarks of the underlying medium is examined applying the Event-Shape Engineering (ESE) technique to the nonstrange D-meson elliptic flow.


Sign in / Sign up

Export Citation Format

Share Document