scholarly journals Search for Charged Lepton Flavour Violation at CMS

2018 ◽  
Vol 182 ◽  
pp. 02090
Author(s):  
Swagata Mukherjee

Lepton flavour is a conserved quantity in the standard model of particle physics, but it does not follow from an underlying gauge symmetry. After the discovery of neutrino oscillation, it has been established that lepton flavour is not conserved in the neutral sector. Thus the lepton sector is an excellent place to look for New Physics, and in this perspective the Charged Lepton Flavour Violation is interesting. Various extensions of the standard model predict lepton flavour violating decays that can be observed at LHC. This report summarises several searches for lepton flavour violation with data collected by the CMS detector.

2020 ◽  
Vol 234 ◽  
pp. 01004 ◽  
Author(s):  
P. de Simone

Tests of lepton flavour universality in B decays offer an excellent opportunity to test the Standard Model, and show hints of new physics in analyses performed by the LHCb, Belle and BaBar experiments. Several theoretical models proposed to explain possible violation of lepton flavour universality claim a connection with lepton flavour violation in B decays. These proceedings review the experimental status of the tests of lepton flavour universality and the searches of lepton flavour violation in B decays.


2019 ◽  
Author(s):  
Ana M. Teixeira

Neutrino oscillations provided the first evidence for the violation of flavour in the lepton sector, and established a clear need to consider extensions of the Standard Model. Many new phenomena can emerge from these New Physics (NP) constructions, among which processes violating lepton number and charged lepton flavour, all clear signals of New Physics. Following a short overview of the status of experimental searches, we comment on the prospects of several models of massive neutrinos, from minimal constructions to complete NP models, to the above mentioned observables.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Alexander Bednyakov ◽  
Alfiia Mukhaeva

Flavour anomalies have attracted a lot of attention over recent years as they provide unique hints for possible New Physics. Here, we consider a supersymmetric (SUSY) extension of the Standard Model (SM) with an additional anomaly-free gauge U(1) group. The key feature of our model is the particular choice of non-universal charges to the gauge boson Z′, which not only allows a relaxation of the flavour discrepancies but, contrary to previous studies, can reproduce the SM mixing matrices both in the quark and lepton sectors. We pay special attention to the latter and explicitly enumerate all parameters relevant for our calculation in the low-energy effective theory. We find regions in the parameter space that satisfy experimental constraints on meson mixing and LHC Z′ searches and can alleviate the flavour anomalies. In addition, we also discuss the predictions for lepton-flavour violating decays B+→K+μτ and B+→K+eτ.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1738-1749 ◽  
Author(s):  
LUCA SILVESTRINI

We review the status of rare decays and CP violation in extensions of the Standard Model. We analyze the determination of the unitarity triangle and the model-independent constraints on new physics that can be derived from this analysis. We find stringent bounds on new contributions to [Formula: see text] and [Formula: see text] mixing, pointing either to models of minimal flavour violation or to models with new sources of flavour and CP violation in b → s transitions. We discuss the status of the universal unitarity triangle in minimal flavour violation, and study rare decays in this class of models. We then turn to supersymmetric models with nontrivial mixing between second and third generation squarks, discuss the present constraints on this mixing and analyze the possible effects on CP violation in b → s nonleptonic decays and on [Formula: see text] mixing. We conclude presenting an outlook on Lepton-Photon 2009.


2018 ◽  
Vol 179 ◽  
pp. 01015 ◽  
Author(s):  
Dario Müller

While the LHC has not directly observed any new particle so far, experimental results from LHCb, BELLE and BABAR point towards the violation of lepton flavour universality in b ⟶ sℓ+ and b ⟶ c-ℓν. In this context, also the discrepancy in the anomalous magnetic moment of the muon can be interpreted as a sign of lepton flavour universality violation. Here we discuss how these hints for new physics can also be explained by introducing leptoquarks as an extension of the Standard Model. Indeed, leptoquarks are good candidates to explain the anomaly in the anomalous magnetic moment of the muon because of an mg/mμ enhanced contribution giving correlated effects in Z boson decays which is particularly interesting in the light of future precision experiments.


2017 ◽  
Vol 2017 (3) ◽  
Author(s):  
Christopher G. Lester ◽  
Benjamin H. Brunt

Abstract We argue that an LHC measurement of some simple quantities related to the ratio of rates of e + μ − to e − μ + events is surprisingly sensitive to as-yet unexcluded R-parity violating supersymmetric models with non-zero λ 231 ′ couplings. The search relies upon the approximate lepton universality in the Standard Model, the sign of the charge of the proton, and a collection of favourable detector biases. The proposed search is unusual because: it does not require any of the displaced vertices, hadronic neutralino decay products, or squark/gluino production relied upon by existing LHC RPV searches; it could work in cases in which the only light sparticles were smuons and neutralinos; and it could make a discovery (though not necessarily with optimal significance) without requiring the computation of a leading-order Monte Carlo estimate of any background rate. The LHC has shown no strong hints of post-Higgs physics and so precision Standard Model measurements are becoming ever more important. We argue that in this environment growing profits are to be made from searches that place detector biases and symmetries of the Standard Model at their core — searches based around ‘controls’ rather than around signals.


Sign in / Sign up

Export Citation Format

Share Document