scholarly journals Difference between two species of emu hides a test for lepton flavour violation

2017 ◽  
Vol 2017 (3) ◽  
Author(s):  
Christopher G. Lester ◽  
Benjamin H. Brunt

Abstract We argue that an LHC measurement of some simple quantities related to the ratio of rates of e + μ − to e − μ + events is surprisingly sensitive to as-yet unexcluded R-parity violating supersymmetric models with non-zero λ 231 ′ couplings. The search relies upon the approximate lepton universality in the Standard Model, the sign of the charge of the proton, and a collection of favourable detector biases. The proposed search is unusual because: it does not require any of the displaced vertices, hadronic neutralino decay products, or squark/gluino production relied upon by existing LHC RPV searches; it could work in cases in which the only light sparticles were smuons and neutralinos; and it could make a discovery (though not necessarily with optimal significance) without requiring the computation of a leading-order Monte Carlo estimate of any background rate. The LHC has shown no strong hints of post-Higgs physics and so precision Standard Model measurements are becoming ever more important. We argue that in this environment growing profits are to be made from searches that place detector biases and symmetries of the Standard Model at their core — searches based around ‘controls’ rather than around signals.

2020 ◽  
Vol 234 ◽  
pp. 01004 ◽  
Author(s):  
P. de Simone

Tests of lepton flavour universality in B decays offer an excellent opportunity to test the Standard Model, and show hints of new physics in analyses performed by the LHCb, Belle and BaBar experiments. Several theoretical models proposed to explain possible violation of lepton flavour universality claim a connection with lepton flavour violation in B decays. These proceedings review the experimental status of the tests of lepton flavour universality and the searches of lepton flavour violation in B decays.


2018 ◽  
Vol 182 ◽  
pp. 02090
Author(s):  
Swagata Mukherjee

Lepton flavour is a conserved quantity in the standard model of particle physics, but it does not follow from an underlying gauge symmetry. After the discovery of neutrino oscillation, it has been established that lepton flavour is not conserved in the neutral sector. Thus the lepton sector is an excellent place to look for New Physics, and in this perspective the Charged Lepton Flavour Violation is interesting. Various extensions of the standard model predict lepton flavour violating decays that can be observed at LHC. This report summarises several searches for lepton flavour violation with data collected by the CMS detector.


2019 ◽  
Vol 212 ◽  
pp. 01006
Author(s):  
Dzmitry Shoukavy

Lepton Flavour Violation in the charged lepton sector (CLFV) is forbidden in the Standard Model. Therefore, the observation of CLFV process would be clear evidence of physics beyond the Standard Model. The COMET (COherent Muon to Electron Transitions) experiment will measure one of these processes: µN → eN at the Japan Proton Accelerator Research Complex in Tokai, Japan. The COMET experiment will be carried out using a two-staged approach. Phase-I of the experiment is aiming at a signal sensitivity of 3.1 × 10−15. Phase-II will use much more intense beam and a more complex transport system to achieve a single-event sensitivity of 3 × 10−17. The article gives an overview of construction and status of the COMET experiment.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Lina Alasfar ◽  
Aleksandr Azatov ◽  
Jorge de Blas ◽  
Ayan Paul ◽  
Mauro Valli

Abstract The measurements carried out at LEP and SLC projected us into the precision era of electroweak physics. This has also been relevant in the theoretical interpretation of LHCb and Belle measurements of rare B semileptonic decays, paving the road for new physics with the inference of lepton universality violation in $$ {R}_{K^{\left(\ast \right)}} $$ R K ∗ ratios. The simplest explanation of these flavour anomalies — sizeable one-loop contributions respecting Minimal Flavour Violation — is currently disfavoured by electroweak precision data. In this work, we discuss how to completely relieve the present tension between electroweak constraints and one-loop minimal flavour violating solutions to $$ {R}_{K^{\left(\ast \right)}} $$ R K ∗ . We determine the correlations in the Standard Model Effective Field Theory that highlight the existence of such a possibility. Then, we consider minimal extensions of the Standard Model where our effective-field-theory picture can be realized. We discuss how these solutions to b → sℓℓ anomalies, respecting electroweak precision and without any new source of flavour violation, may point to the existence of a Z′ boson at around the TeV scale, within the discovery potential of LHC, or to leptoquark scenarios.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Paul Frederik Depta ◽  
Andreas Halsch ◽  
Janine Hütig ◽  
Sebastian Mendizabal ◽  
Owe Philipsen

Abstract Thermal leptogenesis, in the framework of the standard model with three additional heavy Majorana neutrinos, provides an attractive scenario to explain the observed baryon asymmetry in the universe. It is based on the out-of-equilibrium decay of Majorana neutrinos in a thermal bath of standard model particles, which in a fully quantum field theoretical formalism is obtained by solving Kadanoff-Baym equations. So far, the leading two-loop contributions from leptons and Higgs particles are included, but not yet gauge corrections. These enter at three-loop level but, in certain kinematical regimes, require a resummation to infinite loop order for a result to leading order in the gauge coupling. In this work, we apply such a resummation to the calculation of the lepton number density. The full result for the simplest “vanilla leptogenesis” scenario is by $$ \mathcal{O} $$ O (1) increased compared to that of quantum Boltzmann equations, and for the first time permits an estimate of all theoretical uncertainties. This step completes the quantum theory of leptogenesis and forms the basis for quantitative evaluations, as well as extensions to other scenarios.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Alexander Bednyakov ◽  
Alfiia Mukhaeva

Flavour anomalies have attracted a lot of attention over recent years as they provide unique hints for possible New Physics. Here, we consider a supersymmetric (SUSY) extension of the Standard Model (SM) with an additional anomaly-free gauge U(1) group. The key feature of our model is the particular choice of non-universal charges to the gauge boson Z′, which not only allows a relaxation of the flavour discrepancies but, contrary to previous studies, can reproduce the SM mixing matrices both in the quark and lepton sectors. We pay special attention to the latter and explicitly enumerate all parameters relevant for our calculation in the low-energy effective theory. We find regions in the parameter space that satisfy experimental constraints on meson mixing and LHC Z′ searches and can alleviate the flavour anomalies. In addition, we also discuss the predictions for lepton-flavour violating decays B+→K+μτ and B+→K+eτ.


2018 ◽  
Vol 33 (32) ◽  
pp. 1850194
Author(s):  
Aritra Biswas ◽  
Sanjoy Mandal ◽  
Nita Sinha

We show that for a heavy vector-like quark model with a down type isosinglet, branching ratio for [Formula: see text] decay is enhanced by more than [Formula: see text] as compared to that in the Standard model when QCD corrections to next-to-leading order are incorporated. In a left–right symmetric model (LRSM) along with a heavy vector-like fermion, enhancement of this order can be achieved at the bare (QCD uncorrected) level itself. We propose that a measurement of the photon polarization could be used to signal the presence of such new physics in spite of the large long distance effects. We find that there is a large region within the allowed parameter space of the model with a vector-like quark and an additional left–right symmetry, where, the photon polarization can be dominantly right-handed.


Sign in / Sign up

Export Citation Format

Share Document