scholarly journals Dense cold matter

2019 ◽  
Vol 204 ◽  
pp. 01023
Author(s):  
Alexey Stavinskiy

Opportunities to study unexplored domains of nuclear matter phase diagram with BM@N and SPD-NICA is discussed. Since the optimal initial energy range depends on the phase diagram domain, the subject and experimental methods for its study have a lot of opportunities both for the fixed target and collider experiments. Fixed target experiments provide an access to the laboratory study of nuclear matter with the unprecedented density as high as the one for the neutron star core and even larger. A specialised kinematic trigger for relativistic ion-ion collisions can be used for this study. On the other hand, the NICA collider energy range will provide unique opportunities to study interactions between multi-quark states. The article discusses the importance of experimental study of the diquark component of nuclear structure function and diquark-diquark interactions. It is important to develop neutron identification methods both for the fixed target and collider experiments.

1989 ◽  
Vol 40 (1) ◽  
pp. 157-164 ◽  
Author(s):  
H. W. Barz ◽  
B. L. Friman ◽  
J. Knoll ◽  
H. Schulz

Open Physics ◽  
2012 ◽  
Vol 10 (6) ◽  
Author(s):  
Tetyana Galatyuk ◽  
Manuel Lorenz

AbstractIn the energy domain of 1–2 GeV kinetic energy per nucleon, HADES has measured rare and penetrating probes in elementary and heavy ion collisions. Our results demonstrate that electron pair emission in C+C collisions can essentially be explained as a superposition of independent N+N collisions. HADES results on e+e− production in Ar+KCl collisions, however, show a strong enhancement of the dilepton yield relative to a reference spectrum obtained from elementary nucleon-nucleon reactions, signal the onset of medium effects beyond the superposition of individual N+N collisions. Intriguing results where also obtained from the reconstruction of hadrons with open and hidden strangeness. Analyses of the experimentally obtained hadronic yields measured in Ar+KCl allows to extract the chemical freeze-out conditions in the T -µB phase diagram of strongly interacting matter. While the measured abundance of all reconstructed particles are well described assuming thermalization, the also reconstructed double strange baryon ≡− appears about ten times more abundant than expected. This result will be discussed in the context of the exploration of the nuclear matter phase diagram in the region of finite density. Further investigations to search for significant medium effects, will be followed over the coming years with an upgraded HADES detector.


2018 ◽  
Vol 171 ◽  
pp. 01001
Author(s):  
Heidi Schuldes

The High-Acceptance DiElectron Spectrometer (HADES) operates in the 1 - 2A GeV energy regime in fixed target experiments to explore baryon-rich strongly interacting matter in heavy-ion collisions at moderate temperatures with rare and penetrating probes. We present results on the production of strange hadrons below their respective NN threshold energy in Au+Au collisions at 1.23A GeV ([see formula in PDF] = 2.4 GeV). Special emphasis is put on the enhanced feed-down contribution of ϕ mesons to the inclusive yield of K- and its implication on the measured spectral shape of K-. Furthermore, we investigate global properties of the system, confronting the measured hadron yields and transverse mass spectra with a Statistical Hadronization Model (SHM) and a blastwave parameterization, respectively. These supplement the world data of the chemical and kinetic freeze-out temperatures.


1983 ◽  
Vol 313 (4) ◽  
pp. 369-370 ◽  
Author(s):  
H. Schulz ◽  
G. R�pke ◽  
M. Schmidt

2013 ◽  
Vol 413 ◽  
pp. 012018 ◽  
Author(s):  
M Colonna ◽  
V Baran ◽  
M Di Toro ◽  
C Rizzo

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
François Arleo ◽  
Stéphane Peigné

Quarkonium production in proton-nucleus collisions is a powerful tool to disentangle cold nuclear matter effects. A model based on coherent energy loss is able to explain the available quarkonium suppression data in a broad range of rapidities, from fixed-target to collider energies, suggesting coherent energy loss in cold nuclear matter to be the dominant effect in quarkonium suppression in p-A collisions. This could be further tested in a high-energy fixed-target experiment using a proton or nucleus beam. The nuclear modification factors ofJ/ψandΥas a function of rapidity are computed in p-A collisions ats=114.6 GeV, and in p-Pb and Pb-Pb collisions ats=72 GeV. These center-of-mass energies correspond to the collision on fixed-target nuclei of 7 TeV protons and 2.76 TeV (per nucleon) lead nuclei available at the LHC.


2012 ◽  
Vol 21 ◽  
pp. 08009
Author(s):  
L.G. Moretto ◽  
J.B. Elliott ◽  
P.T. Lake ◽  
L. Phair

Sign in / Sign up

Export Citation Format

Share Document