scholarly journals Studying Strangeness Production with HADES

2018 ◽  
Vol 171 ◽  
pp. 01001
Author(s):  
Heidi Schuldes

The High-Acceptance DiElectron Spectrometer (HADES) operates in the 1 - 2A GeV energy regime in fixed target experiments to explore baryon-rich strongly interacting matter in heavy-ion collisions at moderate temperatures with rare and penetrating probes. We present results on the production of strange hadrons below their respective NN threshold energy in Au+Au collisions at 1.23A GeV ([see formula in PDF] = 2.4 GeV). Special emphasis is put on the enhanced feed-down contribution of ϕ mesons to the inclusive yield of K- and its implication on the measured spectral shape of K-. Furthermore, we investigate global properties of the system, confronting the measured hadron yields and transverse mass spectra with a Statistical Hadronization Model (SHM) and a blastwave parameterization, respectively. These supplement the world data of the chemical and kinetic freeze-out temperatures.

Pramana ◽  
2006 ◽  
Vol 66 (5) ◽  
pp. 809-816
Author(s):  
P. K. Sahu ◽  
N. Otuka ◽  
M. Isse ◽  
Y. Nara ◽  
A. Ohnishi

2013 ◽  
Vol 28 (16) ◽  
pp. 1350070 ◽  
Author(s):  
PORNRAD SRISAWAD ◽  
ANANYA SUKSRI ◽  
SIRICHAI PHOLWIANG ◽  
ANTONY HARFIELD ◽  
YU-MING ZHENG ◽  
...  

In heavy-ion collisions, the production of kaon at intermediate energies provides a sensitive probe to study the in-medium properties of hadrons. Properties of kaons in dense hadronic matter are important for a better understanding of both the possible restoration of chiral symmetry in dense hadronic matter and the properties of nuclear matter at high densities. In this paper, the in-medium effects and nuclear equation of state (EOS) are studied by analyzing the transverse mass spectra and rapidity distributions of the produced K+ mesons in [Formula: see text] collisions at 1.93 A GeV using the quantum molecular dynamics (QMD) model. The work reveals that the KaoS data favor a repulsive in-medium K+N potential (its value at saturation density ρ0 is (Uk(ρ0) ≈30 MeV ). It is also found that the transverse mass spectra and rapidity distributions of K+ mesons are sensitive to the nuclear EOS.


2013 ◽  
Vol 2013 ◽  
pp. 1-27 ◽  
Author(s):  
S. K. Tiwari ◽  
C. P. Singh

The current status of various thermal and statistical descriptions of particle production in the ultrarelativistic heavy-ion collisions experiments is presented in detail. We discuss the formulation of various types of thermal models of a hot and dense hadron gas (HG) and the methods incorporated in the implementing of the interactions between hadrons. It includes our new excluded-volume model which is thermodynamically consistent. The results of the above models together with the experimental results for various ratios of the produced hadrons are compared. We derive some new universal conditions emerging at the chemical freeze-out of HG fireball showing independence with respect to the energy as well as the structure of the nuclei used in the collision. Further, we calculate various transport properties of HG such as the ratio of shear viscosity-to-entropy using our thermal model and compare with the results of other models. We also show the rapidity as well as transverse mass spectra of various hadrons in the thermal HG model in order to outline the presence of flow in the fluid formed in the collision. The purpose of this review article is to organize and summarize the experimental data obtained in various experiments with heavy-ion collisions and then to examine and analyze them using thermal models so that a firm conclusion regarding the formation of quark-gluon plasma (QGP) can be obtained.


2017 ◽  
Vol 138 ◽  
pp. 03009
Author(s):  
Alexey Kurepin ◽  
Nataliya Topilskaya

1997 ◽  
Vol 12 (02) ◽  
pp. 127-134 ◽  
Author(s):  
R. S. Bhalerao ◽  
S. K. Gupta

We present a method of analyzing invariant-mass spectra of kaon pairs resulting from decay of ϕ mesons produced in high-energy heavy-ion collisions. It can be used to extract the shifts in the mass and the width (ΔM and ΔΓ) of the ϕ mesons when they are inside the dense matter formed in these collisions. We illustrate our method with the help of available preliminary data. Extracted values of ΔM and ΔΓ are significantly larger than those obtained with an earlier method. Our results are consistent with the experimentally observed pT dependence of the mass shift. Finally, we present a phenomenological relation between ΔM and ΔΓ. It provides a useful constraint on theories which predict the values of these two quantities.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 126
Author(s):  
Andrey Seryakov

The phase diagram of the strongly interacting matter is the main research subject for different current and future experiments in high-energy physics. System size and energy scan programs aim to find a possible critical point. One of such programs was accomplished by the fixed-target NA61/SHINE experiment in 2018. It includes six beam energies and six colliding systems: p + p, Be + Be, Ar + Sc, Xe + La, Pb + Pb and p + Pb. In this study, we discuss how the efficiency of centrality selection by forward spectators influences multiplicity and fluctuation measures and how this influence depends on the size of colliding systems. We use SHIELD and EPOS Monte-Carlo (MC) generators along with the wounded nucleon model, introduce a probability to lose a forward spectator and spectator energy loss. We show that for light colliding systems such as Be or Li even a small inefficiency in centrality selection has a dramatic impact on multiplicity scaled variance. Conversely, heavy systems such as Ar + Sc are much less prone to the effect.


2018 ◽  
Vol 177 ◽  
pp. 04004
Author(s):  
Sergei Bazylev ◽  
Mikhail Kapishin ◽  
Kacper Kapusniak ◽  
Vladimir Karjavine ◽  
Sergei Khabarov ◽  
...  

BM@N is the fixed target experiment at the accelerator complex NICA-Nuclotron aimed to study nuclear matter in the relativistic heavy ion collisions. Triple-GEM detectors were identified as appropriate for the BM@N tracking system located inside the analyzing magnet. Seven GEM chambers are integrated into the BM@N experimental setup and data acquisition system. GEM construction, main characteristics and first obtained results of the GEM tracking system performance in the technical run with the deuteron beam are shortly reviewed.


2007 ◽  
Vol 16 (07n08) ◽  
pp. 1883-1889 ◽  
Author(s):  
◽  
DEBASISH DAS

The influence of Bose–Einstein statistics on multi-particle production characterized for various systems and energies by the STAR collaboration provides interesting information about the space-time dynamics of relativistic heavy-ion collisions at RHIC. We present the centrality and transverse mass dependence measurements of the two-pion interferometry in Au + Au collisions at [Formula: see text] and Cu + Cu collisions at [Formula: see text] and 200 GeV. We compare the new data with previous STAR measurements from p + p , d + Au and Au + Au collisions at [Formula: see text]. In all systems and centralities, HBT radii decrease with transverse mass in a similar manner, which is qualitatively consistent with collective flow. The scaling of the apparent freeze-out volume with the number of participants and charged particle multiplicity is studied. Measurements of Au + Au collisions at same centralities and different energies yield different freeze-out volumes, which mean that N part is not a suitable scaling variable. The multiplicity scaling of the measured HBT radii is found to be independent of colliding system and collision energy.


Sign in / Sign up

Export Citation Format

Share Document