scholarly journals TeV J2032+4130 - very high energy gamma-ray source of unresolved nature

2019 ◽  
Vol 208 ◽  
pp. 14009
Author(s):  
V.G. Sinitsyna ◽  
V.Y. Sinitsyna ◽  
K.A. Balygin ◽  
S.S. Borisov ◽  
A.M. Kirichenko ◽  
...  

The Cygnus Region is one of the brightest regions in all ranges of the electromagnetic spectrum and contains a number of potential GeV and TeV emission sources. It includes active star formation regions, pulsars and supernova remnants. Some of the sources have been detected at high and very high energies. One of them discovered due to its proximity to the well-known microquasar Cyg X-3 is the object TeV J2032+4130. This object is still of unresolved nature and is being intensively studied in different energy ranges. The results of twenty-year observations of TeV J2032+4130 by the SHALON experiment are presented in this paper. The collected experimental data on fluxes, spectrum shape and morphology of TeV J2032+413 can help in the future to determine an object type and reveal mechanisms of generation of very high energy emission.

2017 ◽  
Vol 471 (1) ◽  
pp. 201-209 ◽  
Author(s):  
P. Cristofari ◽  
S. Gabici ◽  
T. B. Humensky ◽  
M. Santander ◽  
R. Terrier ◽  
...  

2018 ◽  
Vol 612 ◽  
pp. A6 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

Supernova remnants exhibit shock fronts (shells) that can accelerate charged particles up to very high energies. In the past decade, measurements of a handful of shell-type supernova remnants in very high-energy gamma rays have provided unique insights into the acceleration process. Among those objects, RX J1713.7−3946 (also known as G347.3−0.5) has the largest surface brightness, allowing us in the past to perform the most comprehensive study of morphology and spatially resolved spectra of any such very high-energy gamma-ray source. Here we present extensive new H.E.S.S. measurements of RX J1713.7−3946, almost doubling the observation time compared to our previous publication. Combined with new improved analysis tools, the previous sensitivity is more than doubled. The H.E.S.S. angular resolution of 0.048° (0.036° above 2 TeV) is unprecedented in gamma-ray astronomy and probes physical scales of 0.8 (0.6) parsec at the remnant’s location. The new H.E.S.S. image of RX J1713.7−3946 allows us to reveal clear morphological differences between X-rays and gamma rays. In particular, for the outer edge of the brightest shell region, we find the first ever indication for particles in the process of leaving the acceleration shock region. By studying the broadband energy spectrum, we furthermore extract properties of the parent particle populations, providing new input to the discussion of the leptonic or hadronic nature of the gamma-ray emission mechanism.


2005 ◽  
Vol 20 (29) ◽  
pp. 6981-6990
Author(s):  
ADRIAN BILAND

Very High Energy Gamma-Ray Astronomy (the measurement of γ above 10 GeV) is a rather young but fast evolving field. In the past 16 years some 20 sources have been discovered, about half of them are firmly established and seen with high significance by more than one experiment. This rather short list already contains very different objects like plerions, supernova remnants and active galactic nuclei. A new generation of instruments (CANGAROO III, HESS, MAGIC, VERITAS) is just starting to take data, and first preliminary results show that the sensitivity is improved by at least a factor of 100. Already during commissioning, some new sources have been discovered. This overview will summarize the techniques used in VHE gamma-ray observations as well discuss briefly some physics topics that can be investigated in this energy range.


2008 ◽  
Vol 17 (10) ◽  
pp. 1875-1881
Author(s):  
G. E. ROMERO ◽  
M. ORELLANA ◽  
A. T. OKAZAKI ◽  
S. P. OWOCKI

LS I +61 303 is a puzzling object detected from radio up to very high-energy gamma-rays. Variability has recently been observed in its high-energy emission. The object is a binary system, with a compact object and a Be star as primary. The nature of the secondary and the origin of the gamma-ray emission are not clearly established at present. Recent VLBA radio data have been used to claim that the system is a Be /neutron star colliding wind binary, instead of a microquasar. We review the main views on the nature of LS I +61 303 and present results of 3D SPH simulations that can shed some light on the nature of the system. Our results support an accretion powered source, compatible with a microquasar interpretation.


2014 ◽  
Vol 788 (2) ◽  
pp. 165 ◽  
Author(s):  
K. Hada ◽  
M. Giroletti ◽  
M. Kino ◽  
G. Giovannini ◽  
F. D'Ammando ◽  
...  

2008 ◽  
Author(s):  
Diego F. Torres ◽  
Felix A. Aharonian ◽  
Werner Hofmann ◽  
Frank Rieger

Sign in / Sign up

Export Citation Format

Share Document