scholarly journals Quantum annealing algorithms for track pattern recognition

2020 ◽  
Vol 245 ◽  
pp. 10006
Author(s):  
Masahiko Saito ◽  
Paolo Calafiura ◽  
Heather Gray ◽  
Wim Lavrijsen ◽  
Lucy Linder ◽  
...  

The High-Luminosity Large Hadron Collider (HL-LHC) starts from 2027 to extend the physics discovery potential at the energy frontier. The HL-LHC produces experimental data with a much higher luminosity, requiring a large amount of computing resources mainly due to the complexity of a track pattern recognition algorithm. Quantum annealing might be a solution for an efficient track pattern recognition in the HL-LHC environment. We demonstrated to perform the track pattern recognition by using the D-Wave annealing machine and the Fujitsu Digital Annealer. The tracking efficiency and purity for the D-Wave quantum annealer are comparable with those for a classical simulated annealing at a low pileup condition, while a drop in performance is found at a high pileup condition, corresponding to the HL-LHC pileup environment. The tracking efficiency and purity for the Fujitsu Digital Annealer are nearly the same as the classical simulated annealing.

2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Daniel Vert ◽  
Renaud Sirdey ◽  
Stéphane Louise

AbstractThis paper experimentally investigates the behavior of analog quantum computers as commercialized by D-Wave when confronted to instances of the maximum cardinality matching problem which is specifically designed to be hard to solve by means of simulated annealing. We benchmark a D-Wave “Washington” (2X) with 1098 operational qubits on various sizes of such instances and observe that for all but the most trivially small of these it fails to obtain an optimal solution. Thus, our results suggest that quantum annealing, at least as implemented in a D-Wave device, falls in the same pitfalls as simulated annealing and hence provides additional evidences suggesting that there exist polynomial-time problems that such a machine cannot solve efficiently to optimality. Additionally, we investigate the extent to which the qubits interconnection topologies explains these latter experimental results. In particular, we provide evidences that the sparsity of these topologies which, as such, lead to QUBO problems of artificially inflated sizes can partly explain the aforementioned disappointing observations. Therefore, this paper hints that denser interconnection topologies are necessary to unleash the potential of the quantum annealing approach.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
William Cruz-Santos ◽  
Salvador E. Venegas-Andraca ◽  
Marco Lanzagorta

AbstractQuantum annealing algorithms were introduced to solve combinatorial optimization problems by taking advantage of quantum fluctuations to escape local minima in complex energy landscapes typical of NP − hard problems. In this work, we propose using quantum annealing for the theory of cuts, a field of paramount importance in theoretical computer science. We have proposed a method to formulate the Minimum Multicut Problem into the QUBO representation, and the technical difficulties faced when embedding and submitting a problem to the quantum annealer processor. We show two constructions of the quadratic unconstrained binary optimization functions for the Minimum Multicut Problem and we review several tradeoffs between the two mappings and provide numerical scaling analysis results from several classical approaches. Furthermore, we discuss some of the expected challenges and tradeoffs in the implementation of our mapping in the current generation of D-Wave machines.


2020 ◽  
Vol 4 (4) ◽  
pp. 513-513
Author(s):  
Mingrui Zhao ◽  
Manqi Ruan ◽  
Shouyang Hu ◽  
Jing Zhou ◽  
Yuliang Yan ◽  
...  

2020 ◽  
Vol 4 (3) ◽  
pp. 377-382
Author(s):  
Mingrui Zhao ◽  
Manqi Ruan ◽  
Shouyang Hu ◽  
Jing Zhou ◽  
Yuliang Yan ◽  
...  

Author(s):  
Frédéric Bapst ◽  
Wahid Bhimji ◽  
Paolo Calafiura ◽  
Heather Gray ◽  
Wim Lavrijsen ◽  
...  

AbstractThe reconstruction of charged particles will be a key computing challenge for the high-luminosity Large Hadron Collider (HL-LHC) where increased data rates lead to a large increase in running time for current pattern recognition algorithms. An alternative approach explored here expresses pattern recognition as a quadratic unconstrained binary optimization (QUBO), which allows algorithms to be run on classical and quantum annealers. While the overall timing of the proposed approach and its scaling has still to be measured and studied, we demonstrate that, in terms of efficiency and purity, the same physics performance of the LHC tracking algorithms can be achieved. More research will be needed to achieve comparable performance in HL-LHC conditions, as increasing track density decreases the purity of the QUBO track segment classifier.


Author(s):  
Roberto Benedetti ◽  
Maria Michela Dickson ◽  
Giuseppe Espa ◽  
Francesco Pantalone ◽  
Federica Piersimoni

AbstractBalanced sampling is a random method for sample selection, the use of which is preferable when auxiliary information is available for all units of a population. However, implementing balanced sampling can be a challenging task, and this is due in part to the computational efforts required and the necessity to respect balancing constraints and inclusion probabilities. In the present paper, a new algorithm for selecting balanced samples is proposed. This method is inspired by simulated annealing algorithms, as a balanced sample selection can be interpreted as an optimization problem. A set of simulation experiments and an example using real data shows the efficiency and the accuracy of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document