scholarly journals Decomposition of the static potential in the Maximal Abelian gauge

2022 ◽  
Vol 258 ◽  
pp. 02009
Author(s):  
Vitaly Bornyakov ◽  
Vladimir Goy ◽  
Ilya Kudrov ◽  
Roman Rogalyov

Decomposition of SU(2) gauge field into monopole and monopoleless components is studied in SU(2) gluodynamics and in QC2D with zero and nonzero quark chemical potential after fixing MA gauge. For both components we calculate respective static potential and compare their sum with the nonabelian static potential. We demonstrate good agreement in the confinement phase and discuss the implications of our results.

1993 ◽  
Vol 08 (25) ◽  
pp. 2403-2412 ◽  
Author(s):  
AMITABHA LAHIRI

I present the reduction of phase space of the theory of an antisymmetric tensor potential coupled to an Abelian gauge field, using Dirac's procedure. Duality transformations on the reduced phase space are also discussed.


2014 ◽  
Vol 29 (30) ◽  
pp. 1450161 ◽  
Author(s):  
F. Darabi ◽  
A. Parsiya

Recently, a new class of inflationary models, so-called gauge-flation or non-Abelian gauge field inflation has been introduced where the slow-roll inflation is driven by a non-Abelian gauge field A with the field strength F. This class of models are based on a gauge field theory having F2 and F4 terms with a non-Abelian gauge group minimally coupled to gravity. Here, we present a new class of such inflationary models based on a gauge field theory having only F2 term with non-Abelian gauge fields non-minimally coupled to gravity. The non-minimal coupling is set up by introducing the Einstein tensor besides the metric tensor within the F2 term, which is called kinetic coupled gravity. A perturbation analysis is performed to confront the inflation under consideration with Planck and BICEP2 results


2013 ◽  
Vol 87 (2) ◽  
Author(s):  
Kei-ichi Maeda ◽  
Kei Yamamoto
Keyword(s):  

1990 ◽  
Vol 209 ◽  
Author(s):  
H. Y. Wang ◽  
R. Najafabadi ◽  
D. J. Srolovitz ◽  
R. Lesar

ABSTRACTA new, accurate method for determining equilibrium segregation to defects in solids is employed to examine the segregation of Cu to grain boundaries in Cu-Ni alloys. The results are in very good agreement with the ones given by Monte Carlo. This method is based upon a point approximation for the configurational entropy, an Einstein model for vibrational contributions to the free energy. To achieve the equilibrium state of a defect in an alloy the free energy is minimized with respect to atomic coordinates and composition of each site at constant chemical potential. One of the main advantages this new method enjoys over other methods such as Monte Carlo, is the efficiency with which the atomic structure of a defect, segregation and thermodynamic properties can be determined. The grain boundary free energy can either increase or decrease with increasing temperature due to the competition between energetic and configurational entropy terms. In general, the grain boundary free energy increases with temperature when the segregation is strongest.


Science ◽  
2019 ◽  
Vol 365 (6457) ◽  
pp. 1021-1025 ◽  
Author(s):  
Yi Yang ◽  
Chao Peng ◽  
Di Zhu ◽  
Hrvoje Buljan ◽  
John D. Joannopoulos ◽  
...  

Particles placed inside an Abelian (commutative) gauge field can acquire different phases when traveling along the same path in opposite directions, as is evident from the Aharonov-Bohm effect. Such behaviors can get significantly enriched for a non-Abelian gauge field, where even the ordering of different paths cannot be switched. So far, real-space realizations of gauge fields have been limited to Abelian ones. We report an experimental synthesis of non-Abelian gauge fields in real space and the observation of the non-Abelian Aharonov-Bohm effect with classical waves and classical fluxes. On the basis of optical mode degeneracy, we break time-reversal symmetry in different manners, via temporal modulation and the Faraday effect, to synthesize tunable non-Abelian gauge fields. The Sagnac interference of two final states, obtained by reversely ordered path integrals, demonstrates the noncommutativity of the gauge fields. Our work introduces real-space building blocks for non-Abelian gauge fields, relevant for classical and quantum exotic topological phenomena.


Sign in / Sign up

Export Citation Format

Share Document