scholarly journals Muon radiography to visualise individual fuel rods in sealed casks

2021 ◽  
Vol 7 ◽  
pp. 12
Author(s):  
Thomas Braunroth ◽  
Nadine Berner ◽  
Florian Rowold ◽  
Marc Péridis ◽  
Maik Stuke

Cosmic-ray muons can be used for the non-destructive imaging of spent nuclear fuel in sealed dry storage casks. The scattering data of the muons after traversing provides information on the thereby penetrated materials. Based on these properties, we investigate and discuss the theoretical feasibility of detecting single missing fuel rods in a sealed cask for the first time. We perform simulations of a vertically standing generic cask model loaded with fuel assemblies from a pressurized water reactor and muon detectors placed above and below the cask. By analysing the scattering angles and applying a significance ratio based on the Kolmogorov-Smirnov test statistic we conclude that missing rods can be reliably identified in a reasonable measuring time period depending on their position in the assembly and cask, and on the angular acceptance criterion of the primary, incoming muons.

Data in Brief ◽  
2020 ◽  
Vol 33 ◽  
pp. 106429
Author(s):  
Zsolt Elter ◽  
Li Pöder Balkeståhl ◽  
Erik Branger ◽  
Sophie Grape

2014 ◽  
Vol 1665 ◽  
pp. 283-289 ◽  
Author(s):  
Ernesto González-Robles ◽  
Detlef H. Wegen ◽  
Elke Bohnert ◽  
Dimitrios Papaioannou ◽  
Nikolaus Müller ◽  
...  

ABSTRACTTwo adjacent fuel rod segments were irradiated in a pressurized water reactor achieving an average burn-up of 50.4 GWd/tHM. A physico-chemical characterisation of the high burn-up fuel rod segments was performed, to determine properties relevant to the stability of the spent nuclear fuel under final disposal conditions. No damage of the cladding was observed by means of visual examination and γ-scanning. The maximal oxide layer thickness was 45 µm. The relative fission gas release was determined to be (8.35 ± 0.66) %. Finally, a rim thickness of 83.7 µm and a rim porosity of about 20% were derived from characterisation of the cladded pellets.


1999 ◽  
Vol 125 (3) ◽  
pp. 255-270 ◽  
Author(s):  
Dale B. Lancaster ◽  
Emilio Fuentes ◽  
Chi H. Kang ◽  
Meraj Rahimi

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kihwan Kim ◽  
Byung-Jae Kim ◽  
Young-Jung Youn ◽  
Hae-Seob Choi ◽  
Sang-Ki Moon ◽  
...  

During the reflood phase of a large-break loss-of-coolant accident (LBLOCA) in a pressurized-water reactor (PWR), the fuel rods can be ballooned or rearranged owing to an increase in the temperature and internal pressure of the fuel rods. In this study, an experimental study was performed to understand the thermal behavior and effect of the ballooned region on the coolability using a 2 × 2 rod bundle test facility. The electrically heated rod bundle was used and the ballooning shape of the rods was simulated by superimposing hollow sleeves, which have a 90% blockage ratio. Forced reflood tests were performed to examine the transient two-phase heat transfer behavior for different reflood rates and rod powers. The droplet behaviors were also investigated by measuring the velocity and size of droplets near the blockage region. The results showed that the heat transfer was enhanced in the downstream of the blockage region, owing to the reduced flow area of the subchannel, intensification of turbulence, and deposition of the droplet.


Sign in / Sign up

Export Citation Format

Share Document