scholarly journals Heavy Ion Accelerators for Inertial Fusion

1992 ◽  
Vol 23 (5) ◽  
pp. 88-90
Keyword(s):  
1992 ◽  
Vol 23 (5) ◽  
pp. 83-86 ◽  
Author(s):  
R. Bock
Keyword(s):  

1999 ◽  
Vol 75 (2) ◽  
pp. 121-125
Author(s):  
Masao OGAWA ◽  
Kazuhiko HORIOKA ◽  
Toshiyuki HATTORI

1998 ◽  
Vol 5 (5) ◽  
pp. 1895-1900 ◽  
Author(s):  
Max Tabak ◽  
Debra Callahan-Miller

2002 ◽  
Vol 20 (3) ◽  
pp. 515-520 ◽  
Author(s):  
D.T. GOODIN ◽  
A. NOBILE ◽  
N.B. ALEXANDER ◽  
L.C. BROWN ◽  
J.L. MAXWELL ◽  
...  

The Target Fabrication Facility (TFF) of an inertial fusion energy (IFE) power plant must supply about 500,000 targets per day. The target is injected into the target chamber at a rate of 5–10 Hz and tracked precisely so the heavy ion driver beams can be directed to the target. The feasibility of developing successful fabrication and injection methodologies at the low cost required for energy production (about $0.25/target, approximately 104 times less than current costs) is a critical issue for inertial fusion energy. A significant program is underway to develop the high-volume methods to supply economical IFE targets. This article reviews the requirements for heavy ion driven IFE target fabrication and injection, and presents the current status of and results from the development program. For the first time, an entire pathway from beginning to end is outlined for fabrication of a high-gain, distributed radiator target. A significant development and scale-up program will be necessary to implement this pathway for mass production of IFE targets.


2010 ◽  
Vol 244 (3) ◽  
pp. 032029 ◽  
Author(s):  
K Fiuza ◽  
B Beaudoin ◽  
S Bernal ◽  
I Haber ◽  
R A Kishek ◽  
...  
Keyword(s):  

1996 ◽  
Vol 32-33 ◽  
pp. 359-363 ◽  
Author(s):  
T. Hattori ◽  
K. Sasa ◽  
M. Okamura ◽  
T. Ito ◽  
H. Tomizawa ◽  
...  

2017 ◽  
Vol 35 (2) ◽  
pp. 373-378 ◽  
Author(s):  
P.A. Seidl ◽  
J.J. Barnard ◽  
E. Feinberg ◽  
A. Friedman ◽  
E.P. Gilson ◽  
...  

AbstractWe present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 1011 ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (106 eV)] He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.


Sign in / Sign up

Export Citation Format

Share Document