scholarly journals Identification of Nonparametric Nonlinear Systems

2019 ◽  
Vol 24 ◽  
pp. 02006
Author(s):  
Mohamed Benyassi ◽  
Adil Brouri

Presently, a modelling and identification of nonlinear systems is proposed. This study is developed based on spectral approach. The proposed nonlinear system is nonparametric and can be described by Hammerstein models. These systems consist of nonlinear element followed by a linear block. This latter (the linear subsystem) is not necessarily parametric and the nonlinear function can be nonparametric smooth nonlinearity. This identification problem of Hammerstein models is studied in the presence of possibly infinite-order linear dynamics. The determination of linear and nonlinear block can be done using a unique stage.

Author(s):  
Mohamed Benyassi ◽  
A. Brouri

In this paper, an identification method is proposed to determine the nonlinear systems parameters. The proposed nonlinear systems can be described by Wiener systems. This structure of models consists of series of linear dynamic element and a nonlinearity block. Both the linear and nonlinear parts are nonparametric. In particular, the linear subsystem of structure entirely unknown. The considered nonlinearity function is of hard type. This latter can have a dead zone or with preload. These nonlinear systems have been confirmed by several practical applications. The suggested approach involves easily generated excitation signals.


Author(s):  
V. M. Artyushenko ◽  
V. I. Volovach

The questions connected with mathematical modeling of transformation of non-Gaussian random processes, signals and noise in linear and nonlinear systems are considered and analyzed. The mathematical transformation of random processes in linear inertial systems consisting of both series and parallel connected links, as well as positive and negative feedback is analyzed. The mathematical transformation of random processes with polygamous density of probability distribution during their passage through such systems is considered. Nonlinear inertial and non-linear systems are analyzed.


2011 ◽  
Vol 48-49 ◽  
pp. 17-20
Author(s):  
Chun Li Xie ◽  
Tao Zhang ◽  
Dan Dan Zhao ◽  
Cheng Shao

A design method of LS-SVM based stable adaptive controller is proposed for a class of nonlinear continuous systems with unknown nonlinear function in this paper. Due to the fact that the control law is derived based on the Lyapunov stability theory, the scheme can not only solve the tracking problem of this class of nonlinear systems, but also it can guarantee the asymptotic stability of the closed systems, which is superior to many LS-SVM based control schemes. The effectiveness of the proposed scheme is demonstrated by simulation results.


2013 ◽  
Vol 46 (8) ◽  
pp. 085303 ◽  
Author(s):  
Arkadiusz Kuroś ◽  
Przemysław Kościk ◽  
Anna Okopińska
Keyword(s):  

1992 ◽  
Vol 46 (12) ◽  
pp. 1809-1815 ◽  
Author(s):  
Jie Lin ◽  
Chris W. Brown

The concentrations of NaCl in aqueous solutions have been determined with the use of near-IR spectra between 1100 and 1900 nm. Models expressing the concentration of NaCl are developed with linear and nonlinear regression with the use of the absorbances at selected wavelengths and with principal component regression (PCR) using entire spectra. Temperature perturbations on water bands interfere with the measurement of NaCl but can be removed by linear or nonlinear regressions using the absorbances at the wavelengths where the temperature effects are zero, or they can be accounted for by PCR. Standard errors of 5 mM and a detection limit of IS mM are obtained for NaCl. This technique can be applied for quantitative analysis of NaCl in the laboratory or can be readily adapted for continuous monitoring in process control.


Sign in / Sign up

Export Citation Format

Share Document