THE ANALYSIS OF ULTRASONIC WAVE ATTENUATION SPECTRA IN STEELS

1983 ◽  
Vol 44 (C9) ◽  
pp. C9-337-C9-340 ◽  
Author(s):  
R. L. Smith ◽  
W. N. Reynolds ◽  
S. Perring
2019 ◽  
Vol 124 ◽  
pp. 105809
Author(s):  
Manda Ramaniraka ◽  
Sandrine Rakotonarivo ◽  
Cédric Payan ◽  
Vincent Garnier

Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. MR153-MR171 ◽  
Author(s):  
Linsen Zhan ◽  
Jun Matsushima

The nonintuitive observation of the simultaneous high velocity and high attenuation of ultrasonic waves near the freezing point of brine was previously measured in partially frozen systems. However, previous studies could not fully elucidate the attenuation variation of ultrasonic wave propagation in a partially frozen system. We have investigated the potential attenuation mechanisms responsible for previously obtained laboratory results by modeling ultrasonic wave transmission in two different partially frozen systems: partially frozen brine (two phases composed of ice and unfrozen brine) and unconsolidated sand (three phases composed of ice, unfrozen brine, and sand). We adopted two different rock-physics models: an effective medium model for partially frozen brine and a three-phase extension of the Biot model for partially frozen unconsolidated sand. For partially frozen brine, our rock-physics study indicated that squirt flow caused by unfrozen brine inclusions in porous ice could be responsible for high P-wave attenuation around the freezing point. Decreasing P-wave attenuation below the freezing point can be explained by the gradual decrease of squirt flow due to the gradual depletion of unfrozen brine. For partially frozen unconsolidated sand, our rock-physics study implied that squirt flow between ice grains is a dominant factor for P-wave attenuation around the freezing point. With decreasing temperature lower than the freezing point, the friction between ice and sand grains becomes more dominant for P-wave attenuation because the decreasing amount of unfrozen brine reduces squirt flow between ice grains, whereas the generation of ice increases the friction. The increasing friction between ice and sand grains caused by ice formation is possibly responsible for increasing the S-wave attenuation at decreasing temperatures. Then, further generation of ice with further cooling reduces the elastic contrast between ice and sand grains, hindering their relative motion; thus, reducing the P- and S-wave attenuation.


Geophysics ◽  
2008 ◽  
Vol 73 (2) ◽  
pp. N9-N18 ◽  
Author(s):  
Jun Matsushima ◽  
Makoto Suzuki ◽  
Yoshibumi Kato ◽  
Takao Nibe ◽  
Shuichi Rokugawa

Often, the loss mechanisms responsible for seismic attenuation are unclear and controversial. We used partially frozen brine as a solid-liquid coexistence system to investigate attenuation phenomena. Ultrasonic wave-transmission measurements on an ice-brine coexisting system were conducted to examine the influence of unfrozen brine in the pore microstructure on ultrasonic waves. We observed the variations of a 150–1000 kHz wave transmitted through a liquid system to a solid-liquid coexistence system, changing its temperature from [Formula: see text] to –[Formula: see text]. We quantitatively estimated attenuation in a frequency range of [Formula: see text] by considering different distances between the source and receiver transducers. We also estimated the total amount of frozen brine at each temperature by using the pulsed nuclear magnetic resonance (NMR) technique and related those results to attenuation results. The waveform analyses indicate that ultrasonic attenuation in an ice-brine coexisting system reaches its peak at [Formula: see text], at which the ratio of the liquid phase to the total volume in an ice-brine coexisting system is maximal. Finally, we obtained a highly positive correlation between the attenuation of ultrasonic waves and the total amount of unfrozen brine. Thus, laboratory experiments demonstrate that ultrasonic waves within this frequency range are affected significantly by the existence of unfrozen brine in the pore microstructure.


2007 ◽  
Author(s):  
Jun Matsushima ◽  
Makoto Suzuki ◽  
Yoshibumi Kato ◽  
Shuichi Rokugawa

2006 ◽  
Vol 1 (2) ◽  
pp. 87-103 ◽  
Author(s):  
J. Zhao ◽  
J. G. Cai ◽  
X. B. Zhao ◽  
H. B. Li

1996 ◽  
Vol 29 (9) ◽  
pp. 552-561 ◽  
Author(s):  
M. Bellanger ◽  
J. M. Rémy ◽  
F. Homand

2000 ◽  
Vol 53 (6) ◽  
pp. 805
Author(s):  
H. B. Senin ◽  
H. A. A. Sidek ◽  
G. A. Saunders

The velocities of longitudinal and shear ultrasonic waves propagated in the (Pr2O3)x(P2O5)1-x glass system, where x is the mole fraction of Pr2O3 and (1 - x) is the mole fraction of P2O5, have been measured as functions of temperature and hydrostatic pressure. The temperature dependencies of the second order elastic stiffness tensor components (SOEC) CS IJ , which have been determined from the velocitydata between 10 and 300 K, show no evidence of phonon mode softening throughout the whole temperature range. The elastic stiffnesses increased monotonically, the usual behaviour associated with the effect of the phonon anharmonicityof atomic vibration. At low temperatures, strong phonon interactions with two-level systems have been observed. The ultrasonic wave attenuation of longitudinal and shear waves is dominated bya broad acoustic loss peak whose height and peak position are frequencydependent. This behaviour is consistent with the presence of thermally activated structural relaxation of the two-level systems in these glasses. The fractal bond connectivity of these glasses, obtained from the elastic stiffnesses determined from ultrasonic wave velocities, has a value between 2.32 to 2.55, indicating that their connectivitytends towards having a threedimensional character. The hydrostatic pressure dependencies of longitudinal ultrasonic waves show a slight increase with pressure. As a consequence, the hydrostatic pressure derivatives ( CS11/ P)P=0 of the elastic stiffness CS11/ and (BS/P)P=0 of the bulk modulus BS of (Pr2O3)x(P2O5)1-x glasses are positive. The bulk modulus increases with pressure, and thus these glasses stiffen under pressure, which is associated with the normal elastic behaviour. The GrÜneisen parameter approach has been used to quantifythe vibrational anharmonicityof the long-wavelength acoustic phonons in these glasses.


Sign in / Sign up

Export Citation Format

Share Document