scholarly journals On quasi-reversibility solutions to the Cauchy problem for the Laplace equation: regularity and error estimates

2020 ◽  
Vol 54 (2) ◽  
pp. 493-529
Author(s):  
Laurent Bourgeois ◽  
Lucas Chesnel

We are interested in the classical ill-posed Cauchy problem for the Laplace equation. One method to approximate the solution associated with compatible data consists in considering a family of regularized well-posed problems depending on a small parameter ε > 0. In this context, in order to prove convergence of finite elements methods, it is necessary to get regularity results of the solutions to these regularized problems which hold uniformly in ε. In the present work, we obtain these results in smooth domains and in 2D polygonal geometries. In presence of corners, due to the particular structure of the regularized problems, classical techniques à la Grisvard do not work and instead, we apply the Kondratiev approach. We describe the procedure in detail to keep track of the dependence in ε in all the estimates. The main originality of this study lies in the fact that the limit problem is ill-posed in any framework.

2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2020 ◽  
Vol 28 (4) ◽  
pp. 517-532 ◽  
Author(s):  
Nikolay Koshev ◽  
Nikolay Yavich ◽  
Mikhail Malovichko ◽  
Ekaterina Skidchenko ◽  
Maxim Fedorov

AbstractWe propose an approach and the numerical algorithm for mapping the electroencephalographic (EEG) data from the scalp to the cortex. The algorithm is based on the solution of ill-posed Cauchy problem for the Laplace’s equation using tetrahedral finite elements. The FEM-based scheme allows to calculate the volumetric distribution of a potential over the head volume. We demonstrate the usage of the the algorithm for accurate estimation of the depth of electric sources in the head. The algorithm sufficiently increases the spatial resolution of the EEG technique making it comparable with intracranial techniques.


2011 ◽  
Vol 9 (4) ◽  
pp. 878-896 ◽  
Author(s):  
Houde Han ◽  
Leevan Ling ◽  
Tomoya Takeuchi

AbstractDetecting corrosion by electrical field can be modeled by a Cauchy problem of Laplace equation in annulus domain under the assumption that the thickness of the pipe is relatively small compared with the radius of the pipe. The interior surface of the pipe is inaccessible and the nondestructive detection is solely based on measurements from the outer layer. The Cauchy problem for an elliptic equation is a typical ill-posed problem whose solution does not depend continuously on the boundary data. In this work, we assume that the measurements are available on the whole outer boundary on an annulus domain. By imposing reasonable assumptions, the theoretical goal here is to derive the stabilities of the Cauchy solutions and an energy regularization method. Relationship between the proposed energy regularization method and the Tikhonov regularization with Morozov principle is also given. A novel numerical algorithm is proposed and numerical examples are given.


A method is described by means of which the characteristic initial value problem can be reduced to the Cauchy problem and examples are given of how it can be used in practice. As an application it is shown that the characteristic initial value problem for the Einstein equations in vacuum or with perfect fluid source is well posed when data are given on two transversely intersecting null hypersurfaces. A new discussion is given of the freely specifiable data for this problem.


2014 ◽  
Vol 11 (01) ◽  
pp. 185-213 ◽  
Author(s):  
TATSUO NISHITANI

We study differential operators of order 2 and establish new energy estimates which ensure that the micro supports of solutions to the Cauchy problem propagate with finite speed. We then study the Cauchy problem for non-effectively hyperbolic operators with no null bicharacteristic tangent to the doubly characteristic set and with zero positive trace. By checking the energy estimates, we ensure the propagation with finite speed of the micro supports of solutions, and we prove that the Cauchy problem for such non-effectively hyperbolic operators is C∞ well-posed if and only if the Levi condition holds.


Author(s):  
F. Berthelin ◽  
J. Vovelle

AbstractWe study the Bhatnagar–Gross–Krook (BGK) approximation to first-order scalar conservation laws with a flux which is discontinuous in the space variable. We show that the Cauchy problem for the BGK approximation is well posed and that, as the relaxation parameter tends to 0, it converges to the (entropy) solution of the limit problem.


Sign in / Sign up

Export Citation Format

Share Document