scholarly journals Synchronisation phenomenon in three blades rotor driven by regular or chaotic oscillations

2018 ◽  
Vol 148 ◽  
pp. 06002
Author(s):  
Zofia Szmit ◽  
Jerzy Warmiński

The goal of the paper is to analysed the influence of the different types of excitation on the synchronisation phenomenon in case of the rotating system composed of a rigid hub and three flexible composite beams. In the model is assumed that two blades, due to structural differences, are de-tuned. Numerical calculation are divided on two parts, firstly the rotating system is exited by a torque given by regular harmonic function, than in the second part the torque is produced by chaotic Duffing oscillator. The synchronisation phenomenon between the beams is analysed both either for regular or chaotic motions. Partial differential equations of motion are solved numerically and resonance curves, time series and Poincaré maps are presented for selected excitation torques.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Eva Volna ◽  
Martin Kotyrba ◽  
Hashim Habiballa

The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.


Author(s):  
Jang-Der Jeng ◽  
Yuan Kang ◽  
Yeon-Pun Chang ◽  
Shyh-Shyong Shyr

The Duffing oscillator is well-known models of nonlinear system, with applications in many fields of applied sciences and engineering. In this paper, a response integration algorithm is proposed to analyze high-order harmonic and chaotic motions in this oscillator for modeling rotor excitations. This method numerically integrates the distance between state trajectory and the origin in the phase plane during a specific period and predicted intervals with excitation periods. It provides a quantitative characterization of system responses and can replace the role of the traditional stroboscopic technique (Poincare´ section method) to observe bifurcations and chaos of the nonlinear oscillators. Due to the signal response contamination of system, thus it is difficult to identify the high-order responses of the subharmonic motion because of the sampling points on Poincare´ map too near each other. Even the system responses will be made misjudgments. Combining the capability of precisely identifying period and constructing bifurcation diagrams, the advantages of the proposed response integration method are shown by case studies. Applying this method, the effects of the change in the stiffness and the damping coefficients on the vibration features of a Duffing oscillator are investigated in this paper. From simulation results, it is concluded that the stiffness and damping of the system can effectively suppress chaotic vibration and reduce vibration amplitude.


Author(s):  
Xiangying Guo ◽  
Wei Zhang ◽  
Ming-Hui Yao

This paper presents an analysis on the nonlinear dynamics and multi-pulse chaotic motions of a simply-supported symmetric cross-ply composite laminated rectangular thin plate with the parametric and forcing excitations. Firstly, based on the Reddy’s three-order shear deformation plate theory and the model of the von Karman type geometric nonlinearity, the nonlinear governing partial differential equations of motion for the composite laminated rectangular thin plate are derived by using the Hamilton’s principle. Then, using the second-order Galerkin discretization approach, the partial differential governing equations of motion are transformed to nonlinear ordinary differential equations. The case of the primary parametric resonance and 1:1 internal resonance is considered. Four-dimensional averaged equation is obtained by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is used to give the explicit expressions of normal form. Based on normal form, the energy phase method is utilized to analyze the global bifurcations and multi-pulse chaotic dynamics of the composite laminated rectangular thin plate. The results obtained above illustrate the existence of the chaos for the Smale horseshoe sense in a parametrical and forcing excited composite laminated thin plate. The chaotic motions of the composite laminated rectangular thin plate are also found by using numerical simulation. The results of numerical simulation also indicate that there exist different shapes of the multi-pulse chaotic motions for the composite laminated rectangular thin plate.


Author(s):  
Feras K. Alfosail ◽  
Amal Z. Hajjaj ◽  
Mohammad I. Younis

We investigate theoretically and experimentally the two-to-one internal resonance in micromachined arch beams, which are electrothermally tuned and electrostatically driven. By applying an electrothermal voltage across the arch, the ratio between its first two symmetric modes is tuned to two. We model the nonlinear response of the arch beam during the two-to-one internal resonance using the multiple scales perturbation method. The perturbation solution is expanded up to three orders considering the influence of the quadratic nonlinearities, cubic nonlinearities, and the two simultaneous excitations at higher AC voltages. The perturbation solutions are compared to those obtained from a multimode Galerkin procedure and to experimental data based on deliberately fabricated Silicon arch beam. Good agreement is found among the results. Results indicate that the system exhibits different types of bifurcations, such as saddle node and Hopf bifurcations, which can lead to quasi-periodic and potentially chaotic motions.


2019 ◽  
Author(s):  
Jaqueline Lekscha ◽  
Reik V. Donner

Abstract. Analysing palaeoclimate proxy time series using windowed recurrence network analysis (wRNA) has been shown to provide valuable information on past climate variability. In turn, it has also been found that the robustness of the obtained results differs among proxies from different palaeoclimate archives. To systematically test the suitability of wRNA for studying different types of palaeoclimate proxy time series, we use the framework of forward proxy modelling. For this, we create artificial input time series with different properties and, in a first step, compare the time series properties of the input and the model output time series. In a second step, we compare the areawise significant anomalies detected using wRNA. For proxies from tree and lake archives, we find that significant anomalies present in the input time series are sometimes missed in the input time series after the nonlinear filtering by the corresponding models. For proxies from speleothems, we observe falsely identified significant anomalies that are not present in the input time series. Finally, for proxies from ice cores, the wRNA results show the best correspondence with those for the input data. Our results contribute to improve the interpretation of windowed recurrence network analysis results obtained from real-world palaeoclimate time series.


1989 ◽  
Vol 04 (07) ◽  
pp. 633-644 ◽  
Author(s):  
I. L. BUCHBINDER ◽  
E. N. KIRILLOVA ◽  
S. D. ODINTSOV

The one-loop Vilkovisky effective potential which is not dependent on a gauge and a parametrization of quantum field, is investigated. We have considered Einstein gravity on a background manifold of (flat space) × (d−4- sphere) or × (d−4- dimensional torus ), d is even, and of R3 × (1- sphere ), where R3 is flat space. The numerical calculation for the cases R4 × Td−4 (d = 6,8,10) and R3 × S1 is done. The solution to the one-loop corrected equations of motion is found, although the spontaneous compactification is not stable in these cases.


Author(s):  
J. Kövecses ◽  
R. G. Fenton ◽  
W. L. Cleghorn

Abstract In this paper, an approach is presented for the dynamic modeling and analysis of robotic manipulators having structural flexibility in the links and joints. The formulation allows the user to include different types of flexibilities, as required. This approach includes the dynamic effects of joint driving systems by considering the mass and moments of inertia of their elements, the rotor-link interactions, and the gear reduction ratios; all of which can have significant influences on the behavior of the manipulator. Both distributed-discrete and discretized-discrete parameter models of a robot can be analysed. In the discretized-discrete case, dynamic equations of motion are developed for four model types: rigid link - rigid joint, rigid link - flexible joint, flexible link - rigid joint, and flexible link - flexible joint. An example of a two-link manipulator is considered. Simulation results are presented for different models (flexible joint - rigid link, rigid joint - flexible link, flexible joint - flexible link) of the manipulator. The computations show the influence of joint and link flexibilities on the manipulator performance.


Author(s):  
M Person

The equations of motion of n-bladed propellers with arbitrarily positioned hinges are derived out of the equations of a one-bladed propeller, by superposition. Different types of propellers are compared for time variances at the equations. An unbalanced start-up and the stability analyses (Floquet) of an experimental one-bladed propeller illustrate the need to consider the interaction of the motions of nacelle or hub and blade.


2019 ◽  
Vol 32 (02) ◽  
pp. 321-342 ◽  
Author(s):  
Juan B. Etcheverry

AbstractThis paper intends to throw light upon some aspects of the debate on the characterization of legal principles and on their differences when compared to rules. Particularly, this analysis proposes differentiating principles from rules by considering the functions they perform in law instead of their structural differences. To achieve this, we distinguish between the functions of guidance and justification that legal principles fulfill. From that distinction, we observe that the attempt to characterize legal principles based on the way in which they guide conduct does not seem to be the most appropriate either. In contrast, this paper tries to show that all the different types of precepts known as principles perform a justifying function in legal reasoning.


Sign in / Sign up

Export Citation Format

Share Document