scholarly journals The Process Automation of Temperature Measurement by Measuring Facility Which is Consists from Agilent E8363B and Freezer/Heating Chamber TNC-80

2018 ◽  
Vol 155 ◽  
pp. 01007
Author(s):  
Olga Dotsenko ◽  
Kirill Frolov

The vector network analyzer Agilent PNA series E8363B and freezer and heating chamber TNC-80 were used to measure electromagnetic parameters of natural and artificial substances under temperature influences. LabView 2016 software was used to the virtual instrument generation. This virtual instrument is needed for efficient electromagnetic parameter and temperature measurement automation. The virtual instrument framework and faceplate of the virtual instrument are shown. The present work involves an experimental study of the magnetic permeability of ferrites with hexagonal structure under temperature influences. It is show that there is a nonlinear influence of temperature on magnetic permeability of W-type ferrites.

Author(s):  
T. Geipel ◽  
W. Mader ◽  
P. Pirouz

Temperature affects both elastic and inelastic scattering of electrons in a crystal. The Debye-Waller factor, B, describes the influence of temperature on the elastic scattering of electrons, whereas the imaginary part of the (complex) atomic form factor, fc = fr + ifi, describes the influence of temperature on the inelastic scattering of electrons (i.e. absorption). In HRTEM simulations, two possible ways to include absorption are: (i) an approximate method in which absorption is described by a phenomenological constant, μ, i.e. fi; - μfr, with the real part of the atomic form factor, fr, obtained from Hartree-Fock calculations, (ii) a more accurate method in which the absorptive components, fi of the atomic form factor are explicitly calculated. In this contribution, the inclusion of both the Debye-Waller factor and absorption on HRTEM images of a (Oll)-oriented GaAs crystal are presented (using the EMS software.Fig. 1 shows the the amplitudes and phases of the dominant 111 beams as a function of the specimen thickness, t, for the cases when μ = 0 (i.e. no absorption, solid line) and μ = 0.1 (with absorption, dashed line).


2010 ◽  
Vol 25 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Daniel Żarski ◽  
Dariusz Kucharczyk ◽  
Wojciech Sasinowski ◽  
Katarzyna Targońska ◽  
Andrzej Mamcarz

1930 ◽  
Vol 64 (695) ◽  
pp. 570-574 ◽  
Author(s):  
Leo Ferry ◽  
N. I. Shapiro ◽  
B. N. Sidoroff

Sign in / Sign up

Export Citation Format

Share Document