scholarly journals A comparative study of base isolation devices in light rail transit structure featured with lead rubber bearing and friction pendulum system

2018 ◽  
Vol 195 ◽  
pp. 02013
Author(s):  
Santi Nuraini ◽  
Asdam Tambusay ◽  
Priyo Suprobo

Advanced nonlinear analysis in light rail transit (LRT) structures has been undertaken to examine the influence of seismic isolation devices for reducing seismic demand. The study employed the use of two types of commercially available bearings, namely lead rubber bearing (LRB) and friction pendulum system (FPS). Six LRT structures, designed to be built in Surabaya, were modelled using computer-aided software SAP2000, where each of the three structures consisted of three types of LRB and FPS placed onto the pier cap to support the horizontal upper-structural member. Nonlinear static pushover and dynamic time history analysis with seven improved ground motion data was performed to gain improved insights on the behavioural response of LRT structures, allowing one to fully understand the supremacy of seismic isolations for protecting the structure against seismic actions. It is shown that both devices manage to isolate seismic forces, resulting in alleviation of excessive base shear occurring at the column. In addition, it is noticeable that the overall responses of LRB and FPS shows marginal discrepancies, suggesting both devices are interchangeable to be used for LRT-like structures.

2009 ◽  
Vol 36 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Woo Bum Kim ◽  
Kangmin Lee ◽  
Gil Hee Kim

An experimental and analytical study was performed to determine if the friction pendulum system (FPS) could be applied to the main control room (MCR) of a nuclear power plant as a seismic isolation device. A friction pendulum bearing was fabricated, and the dynamic performance of that bearing was evaluated. A partial model of the MCR with FPS was tested on a shaking table. The model consisted of a cabinet, an access floor, and four friction pendulum bearings. An artificial time history based on the MCR floor response spectrum was used as an earthquake input signal for the test. Analytical and experimental results were compared to verifiy their correlation and to enable the experimental study to cover a range of parametersnot previously studied in other similar experiments. Through these comparisons, it was affirmed that the proposed FPS seismic isolation system can be applied, with high reliability, to the MCR of a nuclear power plant.


2016 ◽  
Vol 846 ◽  
pp. 114-119
Author(s):  
Arati Pokhrel ◽  
Jian Chun Li ◽  
Yan Cheng Li ◽  
Nicos Maksis ◽  
Yang Yu

Due to the fact that safety is the major concern for civil structures in a seismic active zone, it has always been a challenge for structural engineers to protect structures from earthquake. During past several decades base isolation technique has become more and more popular in the field of seismic protection which can be adopted for new structures as well as the retrofit of existing structures. The objective of this study is to evaluate the behaviours of the building with different seismic isolation systems in terms of roof acceleration, elastic base shear and inter-storey drift under four benchmark earthquakes, namely, El Centro, Northridge, Hachinohe and Kobe earthquakes. Firstly, the design of base isolation systems, i.e. lead rubber bearing (LRB) and friction pendulum bearing (FPB) for five storey RC building was introduced in detail. The non-linear time history analysis was performed in order to determine the structural responses whereas Bouc-Wen Model of hysteresis was adopted for modelling the bilinear behaviour of the bearings. Both isolation systems increase the fundamental period of structures and reduces the spectral acceleration, and hence reduces the lateral force cause by earthquake in the structures, resulting in significant improvement in building performance; however the Lead Rubber Bearing provided the best reduction in elastic base shear and inter-storey drift (at first floor) for most of the benchmark earthquakes. For the adopted bearing characteristics, FPB provided the low isolator displacement.


2012 ◽  
Vol 446-449 ◽  
pp. 1132-1137 ◽  
Author(s):  
Shuai Wang ◽  
Liu Han Wen Heisha ◽  
Fang Yu ◽  
Guo Xiang Wang

In order to research the different types of isolation bearings impact on bridge performance, parameters of lead rubber bearing, super high damping rubber bearing and friction pendulum bearing are designed for the three-span continuous bridge. With the method of nonlinear time-history analysis, dynamic characteristic of this isolated bridge is studied by using sap2000. Analysis results show that the isolated bridge with three types isolation bearings has a good seismic isolation effect under rare earthquake. The difference of shear force between friction pendulum and other two types is about 4% below.


2014 ◽  
Vol 578-579 ◽  
pp. 1361-1365
Author(s):  
Lin Liu ◽  
Xuan Min Li ◽  
Wei Tian

Friction Pendulum Systems have been used as base isolation systems for both new construction and retrofit around the world. This paper presented its implementation in an office building located in Shanghai. To evaluate its impact on seismic performance of the retrofitted structure, models are needed to capture the intricate nonlinear behavior of both structural components and isolator elements. Nonlinear time history analysis of the building for the original and retrofitted cases was conducted to assess the efficiency of the isolation system at the high earthquake level. The numerical results indicate that the retrofitted structure experiences significantly less damage and less deformation due to the shake isolation and energy dissipation through the isolators.


2019 ◽  
Vol 8 (3) ◽  
pp. 1754-1760

The effect of height variation of a base isolated building on torsional response has been studied in the paper Also response of lead rubber and friction pendulum base isolator on torsional rotation has been compared. For the study, building rests on friction pendulum system (FPS) and lead rubber bearing (LRB) has been considered. The height of the building is varied successively and subjected to bi-directional seismic excitation. The torsional response of isolated structure is studied for each increment in the storey height for both LRB and FPS isolators and compared with fixed base structure. The result indicates that, base isolated structures reduces torsional rotation. It is also found that torsional rotation for buildings of ten to fifteen stores have significant reduction compared to other models considered in present study. Beyond this, the effectiveness reduces. It is also observed that FPS base isolator has effectively reduced torsional rotation when compared to LRB.


Author(s):  
C. S. Tsai ◽  
Po-Ching Lu ◽  
Wen-Shin Chen

It has been proven that the seismic isolation technology is a very promising tool to lessen damage caused by earthquakes. In order to provide a cheap and efficient base isolator for engineering practice, a new isolator named the trench friction pendulum system (TFPS), which is easy to design and manufacture, is proposed in this study. A series of shaking table tests of a scaled steel structure equipped with TFPS isolators were performed in the Department of Civil Engineering, Feng Chia University, Taichung, Taiwan. Experimental results demonstrate that the TFPS isolator can isolate most of earthquake induced energy trying to impart into the superstructure and that the device is not only cheap but also efficient for seismic mitigation.


Sign in / Sign up

Export Citation Format

Share Document