scholarly journals The Effect of Knee Flexion Angle on Contact Stress of Total Knee Arthroplasty

2018 ◽  
Vol 225 ◽  
pp. 03009 ◽  
Author(s):  
N.M.A. Azam ◽  
Rosdi Daud ◽  
H. Mas Ayu ◽  
J. Ramli ◽  
M.F.B. Hassan ◽  
...  

The effect of flexion angle on contact stress of the knee joint still open to the debate since lack of proof shown that flexion angles does effect the contact stress of Total Knee Arthroplasty (TKA). Thus the aim of this study is to investigate the effect of different flexion angle on contact stress of TKA via finite element method. The TKA is simulated using ANSYS Workbench and the applied loads are 2200 N, 3200 N and 2800 N. The Finite element Analysis (FEA) results for maximum stress of current and proposed designed were then compared. For the new proposed design, the maximum stress for 15° is 12.2 MPa, 45° is 23.6 MPa and 60° is 22.5 MPa which is lower than current design. Thus, it can be concluded that the new proposed design better than current design in term of contact stress. While, the different flexion angle do gives an impact on the performance of the TKA.

2019 ◽  
Vol 36 (3) ◽  
pp. 315-322
Author(s):  
W. L. Su ◽  
K. D. You ◽  
C. C. Yang ◽  
J. J. Wu ◽  
M. K. Yeh

ABSTRACTPrecise bone cut is fundamental in total knee arthroplasty. However, notching of anterior femoral is not uncommon in clinical practice. Reviewing the article, notching and its complication may reach up to 30% and 2.5%, and there is scanty study of notching on the femoral strength. We therefore conduct the finite element analysis to elucidate the effect of notching on femoral mechanical strength. The computerized tomography images were used as the basis to develop the knee model, which was assumed mainly to consist of cortical and cancellous bones. For the implant joint, Zimmer data was considered partly as the basis to develop the model. This study investigated the femoral improper cut effect on the surgery with a static standing condition. The results show that the anterior femoral cut should be undercut 2 mm to overcut 1 mm during the surgery, in order to prevent bone materials from yielding. The exposure of the cancellous bone may cause bone materials to yield when the femur overcut was 2 mm; the cancellous bone may load too much and result in a fracture when the undercut was 3 mm. The effect of undercut, which was rarely discussed, was particularly addressed in our study. Precise femoral cut is crucial for the longevity of total knee arthroplasty.


Author(s):  
Eric Rohrs ◽  
Manish Paliwal ◽  
D. Gordon Allan

Aseptic loosening of the tibial implant is one of the major reasons of failure in Total Knee Arthroplasty (TKA). The cement viscosity at the time of application to the bone influences the cement penetration and stability of the prosthesis. Four cements of different viscosities and set times were selected for analysis (Simplex-P, DePuy-2, Palacos, and Endurance). Finite element analysis was used to model cement flow and cement mantle resulting from a surgically implanted tibial plate into sawbone open cell blocks simulating tibial cancellous bone (Pacific Research, WA). Frictional stress, pressure, sliding distance, and total stress at the bone-cement-stem interface were studied at the contact interfaces, which may contribute towards construct stability. Palacos had the maximum interface pressure, sliding distance, and total stress, while DePuy-2 displayed the lowest total stress and sliding distance at interface. Simulated flow profile correlated well with the cemented constructs’ radiographic profiles.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Susumu Tokunaga ◽  
Renee D. Rogge ◽  
Scott R. Small ◽  
Michael E. Berend ◽  
Merrill A. Ritter

Prosthetic alignment, patient characteristics, and implant design are all factors in long-term survival of total knee arthroplasty (TKA), yet the level at which each of these factors contribute to implant loosening has not been fully described. Prior clinical and biomechanical studies have indicated tibial overload as a cause of early TKA revision. The purpose of this study was to determine the relationship between tibial component design and bone resection on tibial loading. Finite-element analysis (FEA) was performed after simulated implantation of metal backed (MB) and all-polyethylene (AP) TKA components in 5 and 15 mm of tibial resection into a validated intact tibia model. Proximal tibial strains significantly increased between 13% and 199% when implanted with AP components (p < 0.05). Strain significantly increased between 12% and 209% in the posterior tibial compartment with increased bone resection (p < 0.05). This study indicates elevated strains in AP implanted tibias across the entirety of the proximal tibial cortex, as well as a posterior shift in tibial loading in instances of increased resection depth. These results are consistent with trends observed in prior biomechanical studies and may associate the documented device history of tibial collapse in AP components with increased bone strain and overload beneath the prosthesis.


Sign in / Sign up

Export Citation Format

Share Document