scholarly journals Tomographic and Time-Resolved PIV measurement of an Impinging Jet on a Slotted Plate

2019 ◽  
Vol 261 ◽  
pp. 03004
Author(s):  
Jana Hamdi ◽  
Kamel Abed-Meraïm ◽  
Hassan Assoum ◽  
Anas Sakout ◽  
Marwan Al-Kheir ◽  
...  

In order to reveal the complete topology of unsteady coherent flow structures the instantaneous measurement of the 3D velocity field is being of the great interest in fluid mechanic. Several different methods were proposed to achieve a 3D version of the technique (scanning light sheet, holography, 3D PTV). We aimed in our study to develop a 3D technique than enables to obtain the 3D kinematic field of an impinging jet by using 2D measurements. In this study and in order to validate the proposed technique [1], the tomographic particle image velocimetry technique has been applied to time resolved PIV recordings. The first step before the validation was to study the vortex shedding phenomena between the jet exit and the slotted plate. The experiments were performed at a Re = 4458 with an initial velocity U0=7m/s using three cameras Phantom V711 and a Nd: YLF LDY 300 Litron laser. In the present study, we analyzed the coherent structures organization by a 3D-velocity visualization. Both mean and fluctuating part of velocity were analyzed for several positions in z. The results has shown that a couple of vortex rolls are created downstream the flow at y/H=2.

Author(s):  
Reza Kamyab Matin ◽  
Hojat Ghassemi ◽  
Abbas Ebrahimi ◽  
Bahman Ghasemi

In this article, the flow field around NACA0024 airfoil with step at lower and upper surfaces is experimentally investigated. For this purpose, particle image velocimetry technique based on the instantaneous flow structures is used to investigate the flow field around the airfoil at different times. All the experimental measurements in current study are conducted at very low Reynolds number condition based on the chord of the airfoil (Re=2000) and at angles of attack at 0° and 5° where the flow around airfoils is separated. The differences between vortical structures, mean streamlines, sizes of the wake regions, and vortex shedding of the stepped airfoils compared to unmodified airfoil are observed. The results disclose that using step in airfoil leads to a decrease in the Strouhal number. In addition, the formation of vortices in wake region and their positions at different times are discussed.


Author(s):  
Noushin Amini ◽  
Yassin A. Hassan

In this investigation Particle Image Velocimetry technique was implemented to a matched refractive index facility which was placed in a rectangular channel of L:1016 mm×W:76.2 mm×H:76.2 mm. Water was pumped into either one or both of the inlet jets which were entering the channel’s top wall with several different Reynolds numbers. The instantaneous and time-resolved velocity fields were successfully obtained from which several flow characteristics such as vorticity, turbulence instabilities and Reynolds stresses can be calculated.


Sign in / Sign up

Export Citation Format

Share Document