scholarly journals Research on the relationship between the rail corrugation and the vibration response of the wheel-rail system

2020 ◽  
Vol 308 ◽  
pp. 02002
Author(s):  
Xinyu Jia ◽  
Guoqing Li ◽  
Xiubo Liu ◽  
Peng Chen

Rail corrugation is a very common phenomenon in high-speed railways. Rail corrugation can cause increased vibration of trains and tracks, and may even affect the safety of train operation. Therefore, this paper will analyze the vibration of the wheel-rail system caused by the rail corrugation. The actual transient rolling contact model is established by using explicit and implicit finite element methods. Through the calculation of the wheel-rail contact force and the wheel-rail mode, the vibration relationship between the rail corrugation and the wheel-rail system is obtained. It can provide some references for further analysis of the cause of rail corrugation.

Author(s):  
Kai Liu ◽  
Lin Jing

In this study, an explicit finite element analysis method was adopted to investigate the wheel–rail impact response generated by wheel polygonization, using a three-dimensional wheel–rail rolling contact finite element model. In this model, the infrastructure below the rails and the stiffness and damping of the sleeper supports were considered. Then, the characteristics of the wheel–rail contact zone, the stress/strain state and the wheel–rail impact force of the polygonal wheel–rail system were presented and discussed and were compared with those of the ideally perfect wheel–rail system. A parametrical study was then carried out to examine the influences of train speed and the polygonal order of the wheel on the wheel–rail impact response. The finite element analysis results revealed that the vertical wheel–rail impact force induced by wheel polygonization is related to the wheel radial deviation; the maximum contact force, stress and strain are all elevated with the increase of the order of the polygonal wheel, which suggested that the wheel should be repaired when it is in the initial lower order polygonal state. These findings can provide some theoretical and technical support for the optimal design of the wheel–rail system and the safe operation of high-speed trains.


Author(s):  
Miao Yu ◽  
Wei-dong Wang ◽  
Jin-zhao Liu ◽  
Shan-chao Sun

A high-speed wheel/rail finite element model is developed to focus on the non-steady-state rolling contact. The wheel/rail contact is solved based on the surface-to-surface contact algorithm, and the explicit finite element method is used to simulate the dynamic high-speed wheel/rail rolling contact. Considering the track–vehicle coupling system dynamics and the wheel/rail geometric nonlinearities, the wheel/rail contact on the short wave rail corrugation under the high-frequency vibration and the influence of train passing frequency on the track–vehicle system dynamics are studied. The explicit finite element method can be used to simulate the non-steady-state rolling contact process of the high-speed wheel/rail. After the initial load condition, the wheel/rail contact state tends to be stable in a short period of time. The short wave corrugation causes the high-frequency vibration of the track–vehicle system; the slightly advanced phase of the wheel/rail contact force promotes the development of rail corrugation in the rolling direction. When the train passing frequency is close to the rail pinned–pinned frequency, the pinned–pinned resonance occurs. The overall vibration near the fastening is relatively large and accelerates the damage of components. The longitudinal force is clearly affected by the traction torque with a periodic wheel/rail stick-slip vibration. The pinned–pinned resonance will promote the sliding wear at the wave trough near the fastening and it will become severe with the increase of the traction.


2020 ◽  
Vol 0 (12) ◽  
pp. 10-16
Author(s):  
V.V. Avtaev ◽  
◽  
D. V. Grinevich ◽  
A. V. Zavodov

Yielding tests of VTI-4 alloy specimens have been carried out at temperature 1010 °C under conditions of high-speed loading. Based on the test results the modulus of elasticity as well as axial and radial residual deformation values in the end and central zones for each loading stage were determined. Fitting criteria for finite element simulation and the experiment are proposed with tracing VTI-4 alloy diagram deformation at temperature 1010 °C and strain rate of 2.5 sec–1. As a result of finite element simulation the relationship between the material structures obtained during high-speed yielding and the deflected modes in different zones was determined.


2016 ◽  
Vol 33 (4) ◽  
pp. 1033-1050 ◽  
Author(s):  
Xin Zhao ◽  
Zili Li

Purpose – The purpose of this paper is to develop a numerical approach to solve the transient rolling contact problem with the consideration of velocity dependent friction. Design/methodology/approach – A three dimensional (3D) transient FE model is developed in elasticity by the explicit finite element method. Contact solutions with a velocity dependent friction law are compared in detail to those with the Coulomb’s friction law (i.e. a constant coefficient of friction). Findings – The FE solutions confirm the negligible influence of the dependence on the normal contact. Hence, analysis is focussed on the tangential solutions under different friction exploitation levels. In the trailing part of the contact patch where micro-slip occurs, very high-frequency oscillations are excited in the tangential plane by the velocity dependent friction. This is similar to the non-uniform sliding or tangential oscillations observed in sliding contact. Consequently, the micro-slip distribution varies greatly with time. However, the surface shear stress distribution is quite stable at different instants, even though it significantly changes with the employed friction model. Originality/value – This paper proposes an approach to solve the transient rolling contact problem with the consideration of velocity dependent friction. Such a problem was usually solved in the literature by the simplified contact algorithms, with which detailed contact solutions could not be obtained, or with the assumption of steady rolling.


1991 ◽  
pp. 20-71
Author(s):  
Noboru Kikuchi ◽  
Toshikazu Torigaki ◽  
Katsuyuki Suzuki ◽  
Jose Miranda Guedes

Sign in / Sign up

Export Citation Format

Share Document