scholarly journals Recognition and Quantification of Dual Phase Titanium Alloy Microstructures Using Convolutional Neural Networks

2020 ◽  
Vol 321 ◽  
pp. 11084
Author(s):  
Ryan Noraas ◽  
Vasisht Venkatesh ◽  
Luke Rettberg ◽  
Nagendra Somanath

Recent advances in machine learning and image recognition tools/methods are being used to address fundamental challenges in materials engineering, such as the automated extraction of statistical information from dual phase titanium alloy microstructure images to support rapid engineering decision making. Initially, this work was performed by extracting dense layer outputs from a pretrained convolutional neural network (CNN), running the high dimensional image vectors through a principal component analysis, and fitting a logistic regression model for image classification. Kfold cross validation results reported a mean validation accuracy of 83% over 19 different material pedigrees. Furthermore, it was shown that fine-tuning the pre-trained network was able to improve image classification accuracy by nearly 10% over the baseline. These image classification models were then used to determine and justify statistically equivalent representative volume elements (SERVE). Lastly, a convolutional neural network was trained and validated to make quantitative predictions from a synthetic and real, two-phase image datasets. This paper explores the application of convolutional neural networks for microstructure analysis in the context of aerospace engineering and material quality.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haibin Chang ◽  
Ying Cui

More and more image materials are used in various industries these days. Therefore, how to collect useful images from a large set has become an urgent priority. Convolutional neural networks (CNN) have achieved good results in certain image classification tasks, but there are still problems such as poor classification ability, low accuracy, and slow convergence speed. This article mainly introduces the image classification algorithm (ICA) research based on the multilabel learning of the improved convolutional neural network and some improvement ideas for the research of the ICA based on the multilabel learning of the convolutional neural network. This paper proposes an ICA research method based on multilabel learning of improved convolutional neural networks, including the image classification process, convolutional network algorithm, and multilabel learning algorithm. The conclusions show that the average maximum classification accuracy of the improved CNN in this paper is 90.63%, and the performance is better, which is beneficial to improving the efficiency of image classification. The improved CNN network structure has reached the highest accuracy rate of 91.47% on the CIFAR-10 data set, which is much higher than the traditional CNN algorithm.


In this Research study image identifications will be done by the help of Advanced CNN (Convolutional Neural Networks with Tensorflow Framework. Here we use Python as a main programming language because Tensorflow is a python library. In this study input data mainly focuses on Plants categories by the help of leaves for identifications. Selecting CNN is the best approach for the training and testing data because it produces promising and continuously improving results on automated plant identifications. Here results are divided in terms of accuracy and time. Using advanced CNN results are above 95% while on others accuracy is below 90% and taking much time than this.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2393 ◽  
Author(s):  
Daniel Octavian Melinte ◽  
Luige Vladareanu

The interaction between humans and an NAO robot using deep convolutional neural networks (CNN) is presented in this paper based on an innovative end-to-end pipeline method that applies two optimized CNNs, one for face recognition (FR) and another one for the facial expression recognition (FER) in order to obtain real-time inference speed for the entire process. Two different models for FR are considered, one known to be very accurate, but has low inference speed (faster region-based convolutional neural network), and one that is not as accurate but has high inference speed (single shot detector convolutional neural network). For emotion recognition transfer learning and fine-tuning of three CNN models (VGG, Inception V3 and ResNet) has been used. The overall results show that single shot detector convolutional neural network (SSD CNN) and faster region-based convolutional neural network (Faster R-CNN) models for face detection share almost the same accuracy: 97.8% for Faster R-CNN on PASCAL visual object classes (PASCAL VOCs) evaluation metrics and 97.42% for SSD Inception. In terms of FER, ResNet obtained the highest training accuracy (90.14%), while the visual geometry group (VGG) network had 87% accuracy and Inception V3 reached 81%. The results show improvements over 10% when using two serialized CNN, instead of using only the FER CNN, while the recent optimization model, called rectified adaptive moment optimization (RAdam), lead to a better generalization and accuracy improvement of 3%-4% on each emotion recognition CNN.


Deep learning gives the strength on the way to train algorithms model that can handle the difficulties of info classification also prediction grounded on totally on arising information as of raw information. Convolutional Neural Networks (CNNs) gives single often used method for image classification and detection. In this exertion, we define a CNNbased approach for spotting dogs in per chance complex images and due to this fact reflect inconsideration on the identification of the one of kinds of dog breed. The experimental outcome analysis supported the standard metrics and thus the graphical representation confirms that the algorithm (CNN) gives good analysis accuracy for all the tested datasets


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emre Kiyak ◽  
Gulay Unal

Purpose The paper aims to address the tracking algorithm based on deep learning and four deep learning tracking models developed. They compared with each other to prevent collision and to obtain target tracking in autonomous aircraft. Design/methodology/approach First, to follow the visual target, the detection methods were used and then the tracking methods were examined. Here, four models (deep convolutional neural networks (DCNN), deep convolutional neural networks with fine-tuning (DCNNFN), transfer learning with deep convolutional neural network (TLDCNN) and fine-tuning deep convolutional neural network with transfer learning (FNDCNNTL)) were developed. Findings The training time of DCNN took 9 min 33 s, while the accuracy percentage was calculated as 84%. In DCNNFN, the training time of the network was calculated as 4 min 26 s and the accuracy percentage was 91%. The training of TLDCNN) took 34 min and 49 s and the accuracy percentage was calculated as 95%. With FNDCNNTL, the training time of the network was calculated as 34 min 33 s and the accuracy percentage was nearly 100%. Originality/value Compared to the results in the literature ranging from 89.4% to 95.6%, using FNDCNNTL, better results were found in the paper.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 936 ◽  
Author(s):  
Nebojsa Bacanin ◽  
Timea Bezdan ◽  
Eva Tuba ◽  
Ivana Strumberger ◽  
Milan Tuba

Convolutional neural networks have a broad spectrum of practical applications in computer vision. Currently, much of the data come from images, and it is crucial to have an efficient technique for processing these large amounts of data. Convolutional neural networks have proven to be very successful in tackling image processing tasks. However, the design of a network structure for a given problem entails a fine-tuning of the hyperparameters in order to achieve better accuracy. This process takes much time and requires effort and expertise from the domain. Designing convolutional neural networks’ architecture represents a typical NP-hard optimization problem, and some frameworks for generating network structures for a specific image classification tasks have been proposed. To address this issue, in this paper, we propose the hybridized monarch butterfly optimization algorithm. Based on the observed deficiencies of the original monarch butterfly optimization approach, we performed hybridization with two other state-of-the-art swarm intelligence algorithms. The proposed hybrid algorithm was firstly tested on a set of standard unconstrained benchmark instances, and later on, it was adapted for a convolutional neural network design problem. Comparative analysis with other state-of-the-art methods and algorithms, as well as with the original monarch butterfly optimization implementation was performed for both groups of simulations. Experimental results proved that our proposed method managed to obtain higher classification accuracy than other approaches, the results of which were published in the modern computer science literature.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2140
Author(s):  
Jing Chen ◽  
Qi Liu ◽  
Lingwang Gao

Due to the benefits of convolutional neural networks (CNNs) in image classification, they have been extensively used in the computerized classification and focus of crop pests. The intention of the current find out about is to advance a deep convolutional neural network to mechanically identify 14 species of tea pests that possess symmetry properties. (1) As there are not enough tea pests images in the network to train the deep convolutional neural network, we proposes to classify tea pests images by fine-tuning the VGGNET-16 deep convolutional neural network. (2) Through comparison with traditional machine learning algorithms Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP), the performance of our method is evaluated (3) The three methods can identify tea tree pests well: the proposed convolutional neural network classification has accuracy up to 97.75%, while MLP and SVM have accuracies of 76.07% and 68.81%, respectively. Our proposed method performs the best of the assessed recognition algorithms. The experimental results also show that the fine-tuning method is a very powerful and efficient tool for small datasets in practical problems.


Author(s):  
Sachin B. Jadhav

<span lang="EN-US">Plant pathologists desire soft computing technology for accurate and reliable diagnosis of plant diseases. In this study, we propose an efficient soybean disease identification method based on a transfer learning approach by using a pre-trained convolutional neural network (CNN’s) such as AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201. The proposed convolutional neural networks were trained using 1200 plant village image dataset of diseased and healthy soybean leaves, to identify three soybean diseases out of healthy leaves. Pre-trained CNN used to enable a fast and easy system implementation in practice. We used the five-fold cross-validation strategy to analyze the performance of networks. In this study, we used a pre-trained convolutional neural network as feature extractors and classifiers. The experimental results based on the proposed approach using pre-trained AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201 networks achieve an accuracy of 95%, 96.4 %, 96.4 %, 92.1%, 93.6% respectively. The experimental results for the identification of soybean diseases indicated that the proposed networks model achieves the highest accuracy</span>


2021 ◽  
Author(s):  
Shima Baniadamdizaj ◽  
Mohammadreza Soheili ◽  
Azadeh Mansouri

Abstract Today integration of facts from virtual and paper files may be very vital for the expertise control of efficient. This calls for the record to be localized at the photograph. Several strategies had been proposed to resolve this trouble; however, they may be primarily based totally on conventional photograph processing strategies that aren't sturdy to intense viewpoints and backgrounds. Deep Convolutional Neural Networks (CNNs), on the opposite hand, have demonstrated to be extraordinarily sturdy to versions in history and viewing attitude for item detection and classification responsibilities. We endorse new utilization of Neural Networks (NNs) for the localization trouble as a localization trouble. The proposed technique ought to even localize photos that don't have a very square shape. Also, we used a newly accrued dataset that has extra tough responsibilities internal and is in the direction of a slipshod user. The end result knowledgeable in 3 exclusive classes of photos and our proposed technique has 83% on average. The end result is as compared with the maximum famous record localization strategies and cell applications.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 13
Author(s):  
Raveendra K ◽  
R Vinoth Kanna

Automatic logo based document image retrieval process is an essential and mostly used method in the feature extraction applications. In this paper the architecture of Convolutional Neural Network (CNN) was elaborately explained with pictorial representations in order to understand the complex Convolutional Neural Networks process in a simplified way. The main objective of this paper is to effectively utilize the CNN in the process of automatic logo based document image retrieval methods.  


Sign in / Sign up

Export Citation Format

Share Document