scholarly journals Monarch Butterfly Optimization Based Convolutional Neural Network Design

Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 936 ◽  
Author(s):  
Nebojsa Bacanin ◽  
Timea Bezdan ◽  
Eva Tuba ◽  
Ivana Strumberger ◽  
Milan Tuba

Convolutional neural networks have a broad spectrum of practical applications in computer vision. Currently, much of the data come from images, and it is crucial to have an efficient technique for processing these large amounts of data. Convolutional neural networks have proven to be very successful in tackling image processing tasks. However, the design of a network structure for a given problem entails a fine-tuning of the hyperparameters in order to achieve better accuracy. This process takes much time and requires effort and expertise from the domain. Designing convolutional neural networks’ architecture represents a typical NP-hard optimization problem, and some frameworks for generating network structures for a specific image classification tasks have been proposed. To address this issue, in this paper, we propose the hybridized monarch butterfly optimization algorithm. Based on the observed deficiencies of the original monarch butterfly optimization approach, we performed hybridization with two other state-of-the-art swarm intelligence algorithms. The proposed hybrid algorithm was firstly tested on a set of standard unconstrained benchmark instances, and later on, it was adapted for a convolutional neural network design problem. Comparative analysis with other state-of-the-art methods and algorithms, as well as with the original monarch butterfly optimization implementation was performed for both groups of simulations. Experimental results proved that our proposed method managed to obtain higher classification accuracy than other approaches, the results of which were published in the modern computer science literature.

2019 ◽  
Vol 9 (6) ◽  
pp. 1143 ◽  
Author(s):  
Sevinj Yolchuyeva ◽  
Géza Németh ◽  
Bálint Gyires-Tóth

Grapheme-to-phoneme (G2P) conversion is the process of generating pronunciation for words based on their written form. It has a highly essential role for natural language processing, text-to-speech synthesis and automatic speech recognition systems. In this paper, we investigate convolutional neural networks (CNN) for G2P conversion. We propose a novel CNN-based sequence-to-sequence (seq2seq) architecture for G2P conversion. Our approach includes an end-to-end CNN G2P conversion with residual connections and, furthermore, a model that utilizes a convolutional neural network (with and without residual connections) as encoder and Bi-LSTM as a decoder. We compare our approach with state-of-the-art methods, including Encoder-Decoder LSTM and Encoder-Decoder Bi-LSTM. Training and inference times, phoneme and word error rates were evaluated on the public CMUDict dataset for US English, and the best performing convolutional neural network-based architecture was also evaluated on the NetTalk dataset. Our method approaches the accuracy of previous state-of-the-art results in terms of phoneme error rate.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2393 ◽  
Author(s):  
Daniel Octavian Melinte ◽  
Luige Vladareanu

The interaction between humans and an NAO robot using deep convolutional neural networks (CNN) is presented in this paper based on an innovative end-to-end pipeline method that applies two optimized CNNs, one for face recognition (FR) and another one for the facial expression recognition (FER) in order to obtain real-time inference speed for the entire process. Two different models for FR are considered, one known to be very accurate, but has low inference speed (faster region-based convolutional neural network), and one that is not as accurate but has high inference speed (single shot detector convolutional neural network). For emotion recognition transfer learning and fine-tuning of three CNN models (VGG, Inception V3 and ResNet) has been used. The overall results show that single shot detector convolutional neural network (SSD CNN) and faster region-based convolutional neural network (Faster R-CNN) models for face detection share almost the same accuracy: 97.8% for Faster R-CNN on PASCAL visual object classes (PASCAL VOCs) evaluation metrics and 97.42% for SSD Inception. In terms of FER, ResNet obtained the highest training accuracy (90.14%), while the visual geometry group (VGG) network had 87% accuracy and Inception V3 reached 81%. The results show improvements over 10% when using two serialized CNN, instead of using only the FER CNN, while the recent optimization model, called rectified adaptive moment optimization (RAdam), lead to a better generalization and accuracy improvement of 3%-4% on each emotion recognition CNN.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 189
Author(s):  
Feng Liu ◽  
Xuan Zhou ◽  
Xuehu Yan ◽  
Yuliang Lu ◽  
Shudong Wang

Steganalysis is a method to detect whether the objects contain secret messages. With the popularity of deep learning, using convolutional neural networks (CNNs), steganalytic schemes have become the chief method of combating steganography in recent years. However, the diversity of filters has not been fully utilized in the current research. This paper constructs a new effective network with diverse filter modules (DFMs) and squeeze-and-excitation modules (SEMs), which can better capture the embedding artifacts. As the essential parts, combining three different scale convolution filters, DFMs can process information diversely, and the SEMs can enhance the effective channels out from DFMs. The experiments presented that our CNN is effective against content-adaptive steganographic schemes with different payloads, such as S-UNIWARD and WOW algorithms. Moreover, some state-of-the-art methods are compared with our approach to demonstrate the outstanding performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emre Kiyak ◽  
Gulay Unal

Purpose The paper aims to address the tracking algorithm based on deep learning and four deep learning tracking models developed. They compared with each other to prevent collision and to obtain target tracking in autonomous aircraft. Design/methodology/approach First, to follow the visual target, the detection methods were used and then the tracking methods were examined. Here, four models (deep convolutional neural networks (DCNN), deep convolutional neural networks with fine-tuning (DCNNFN), transfer learning with deep convolutional neural network (TLDCNN) and fine-tuning deep convolutional neural network with transfer learning (FNDCNNTL)) were developed. Findings The training time of DCNN took 9 min 33 s, while the accuracy percentage was calculated as 84%. In DCNNFN, the training time of the network was calculated as 4 min 26 s and the accuracy percentage was 91%. The training of TLDCNN) took 34 min and 49 s and the accuracy percentage was calculated as 95%. With FNDCNNTL, the training time of the network was calculated as 34 min 33 s and the accuracy percentage was nearly 100%. Originality/value Compared to the results in the literature ranging from 89.4% to 95.6%, using FNDCNNTL, better results were found in the paper.


2017 ◽  
Vol 17 (5) ◽  
pp. 1110-1128 ◽  
Author(s):  
Deegan J Atha ◽  
Mohammad R Jahanshahi

Corrosion is a major defect in structural systems that has a significant economic impact and can pose safety risks if left untended. Currently, an inspector visually assesses the condition of a structure to identify corrosion. This approach is time-consuming, tedious, and subjective. Robotic systems, such as unmanned aerial vehicles, paired with computer vision algorithms have the potential to perform autonomous damage detection that can significantly decrease inspection time and lead to more frequent and objective inspections. This study evaluates the use of convolutional neural networks for corrosion detection. A convolutional neural network learns the appropriate classification features that in traditional algorithms were hand-engineered. Eliminating the need for dependence on prior knowledge and human effort in designing features is a major advantage of convolutional neural networks. This article presents different convolutional neural network–based approaches for corrosion assessment on metallic surfaces. The effect of different color spaces, sliding window sizes, and convolutional neural network architectures are discussed. To this end, the performance of two pretrained state-of-the-art convolutional neural network architectures as well as two proposed convolutional neural network architectures are evaluated, and it is shown that convolutional neural networks outperform state-of-the-art vision-based corrosion detection approaches that are developed based on texture and color analysis using a simple multilayered perceptron network. Furthermore, it is shown that one of the proposed convolutional neural networks significantly improves the computational time in contrast with state-of-the-art pretrained convolutional neural networks while maintaining comparable performance for corrosion detection.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2140
Author(s):  
Jing Chen ◽  
Qi Liu ◽  
Lingwang Gao

Due to the benefits of convolutional neural networks (CNNs) in image classification, they have been extensively used in the computerized classification and focus of crop pests. The intention of the current find out about is to advance a deep convolutional neural network to mechanically identify 14 species of tea pests that possess symmetry properties. (1) As there are not enough tea pests images in the network to train the deep convolutional neural network, we proposes to classify tea pests images by fine-tuning the VGGNET-16 deep convolutional neural network. (2) Through comparison with traditional machine learning algorithms Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP), the performance of our method is evaluated (3) The three methods can identify tea tree pests well: the proposed convolutional neural network classification has accuracy up to 97.75%, while MLP and SVM have accuracies of 76.07% and 68.81%, respectively. Our proposed method performs the best of the assessed recognition algorithms. The experimental results also show that the fine-tuning method is a very powerful and efficient tool for small datasets in practical problems.


2021 ◽  
Author(s):  
Richardson Santiago Teles Menezes ◽  
Angelo Marcelino Cordeiro ◽  
Rafael Magalhães ◽  
Helton Maia

In this paper, state-of-the-art architectures of Convolutional Neural Networks (CNNs) are explained and compared concerning authorship classification of famous paintings. The chosen CNNs architectures were VGG-16, VGG-19, Residual Neural Networks (ResNet), and Xception. The used dataset is available on the website Kaggle, under the title “Best Artworks of All Time”. Weighted classes for each artist with more than 200 paintings present in the dataset were created to represent and classify each artist’s style. The performed experiments resulted in an accuracy of up to 95% for the Xception architecture with an average F1-score of 0.87, 92% of accuracy with an average F1-score of 0.83 for the ResNet in its 50-layer configuration, while both of the VGG architectures did not present satisfactory results for the same amount of epochs, achieving at most 60% of accuracy.


Author(s):  
Tushar Goyal

Image recognition plays a foundational role in the field of computer vision and there has been extensive research to develop state-of-the-art techniques especially using Convolutional Neural Network (CNN). This paper aims to study some CNNs, heavily inspired by highly popular state-of-the-art CNNs, designed from scratch specifically for the Cifar-10 dataset and present a fair comparison between them.


2020 ◽  
Vol 321 ◽  
pp. 11084
Author(s):  
Ryan Noraas ◽  
Vasisht Venkatesh ◽  
Luke Rettberg ◽  
Nagendra Somanath

Recent advances in machine learning and image recognition tools/methods are being used to address fundamental challenges in materials engineering, such as the automated extraction of statistical information from dual phase titanium alloy microstructure images to support rapid engineering decision making. Initially, this work was performed by extracting dense layer outputs from a pretrained convolutional neural network (CNN), running the high dimensional image vectors through a principal component analysis, and fitting a logistic regression model for image classification. Kfold cross validation results reported a mean validation accuracy of 83% over 19 different material pedigrees. Furthermore, it was shown that fine-tuning the pre-trained network was able to improve image classification accuracy by nearly 10% over the baseline. These image classification models were then used to determine and justify statistically equivalent representative volume elements (SERVE). Lastly, a convolutional neural network was trained and validated to make quantitative predictions from a synthetic and real, two-phase image datasets. This paper explores the application of convolutional neural networks for microstructure analysis in the context of aerospace engineering and material quality.


Author(s):  
Sachin B. Jadhav

<span lang="EN-US">Plant pathologists desire soft computing technology for accurate and reliable diagnosis of plant diseases. In this study, we propose an efficient soybean disease identification method based on a transfer learning approach by using a pre-trained convolutional neural network (CNN’s) such as AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201. The proposed convolutional neural networks were trained using 1200 plant village image dataset of diseased and healthy soybean leaves, to identify three soybean diseases out of healthy leaves. Pre-trained CNN used to enable a fast and easy system implementation in practice. We used the five-fold cross-validation strategy to analyze the performance of networks. In this study, we used a pre-trained convolutional neural network as feature extractors and classifiers. The experimental results based on the proposed approach using pre-trained AlexNet, GoogleNet, VGG16, ResNet101, and DensNet201 networks achieve an accuracy of 95%, 96.4 %, 96.4 %, 92.1%, 93.6% respectively. The experimental results for the identification of soybean diseases indicated that the proposed networks model achieves the highest accuracy</span>


Sign in / Sign up

Export Citation Format

Share Document