scholarly journals Control Algorithm Selection Technique for Vehicle Robotic Transmission in the Urban Cycle

2021 ◽  
Vol 346 ◽  
pp. 03103
Author(s):  
Evgeniy Sarach ◽  
Alexander Tsipilev ◽  
Igor Smirnov

Environmental pollution is one of the most crucial problems in modern world. The toughening of emission standards for toxic fumes, which appear due to the combustion of fossil fuels in internal combustion engines, forces manufacturers to reduce fuel consumption, for example, via more rational use of the internal combustion engine capabilities. This paper is devoted to developing a control algorithm selection technique for economy class passenger car robotic transmission in the conditions of an urban cycle, using Lada Vesta SW Cross as a research subject. At the beginning of the paper, vehicle movement imitational mathematical model implementation, which was developed using LMS Imagine. Lab Amesim program complex. is shown. Also the main assumptions and parameters of engines, cooling systems, transmissions and chassis are given. Then imitational mathematical model verification results, which were processed by comparing movement computer simulation results with the vehicle passport data, are shown. Imitational mathematical model demonstrates the car behavior adequately and very precisely, which means it can be used for vehicle fuel efficiency research. In the main part of the paper, vehicle movement research is conducted in case of three different versions of the internal combustion engine (which has 1,4-, 1,6- and 1,8-liters volume) used in an urban cycle INRETS urbanfluide2. It is clearly shown that the lowest consumption is achieved by reducing the acceleration and braking dynamics via “early” gear shifting, and the crankshaft rotation speed at the corresponding moment of the shift has to be selected for each gear separately. Based on the research results, a switching algorithm and its selection technique, which takes the throttle valve opening degree and the type of the internal combustion engine external speed characteristic into consideration, are presented. In conclusion, this paper presents the results of vehicle movement imitational mathematical modeling in the urban cycle with a modified robotic transmission control algorithm. It is clear that this algorithm can reduce fuel consumption in the urban cycle by 12-20%, depending on the engine volume.

Author(s):  
Dmytro Borysiuk ◽  
Viacheslav Zelinskyi ◽  
Igor Tverdokhlib ◽  
Yurii Polievoda

Constructive improvement of mobile energy means, in particular their main unit - the internal combustion engine, is directed on: maintenance of differentiation of size of parameters of functioning of mechanisms of systems depending on variability of conditions and modes of operation of cars; increase of technical resource at use of cars on purpose in the set operating conditions. The existing methods and tools for diagnosing vehicle engines do not fully determine their current technical condition, which requires the development of mathematical models to automate the process of diagnosing their components and parts was found іn the analysis of literature sources. The object of diagnosis is a diesel internal combustion engine of the YaMZ-238 family, which is part of the power unit of most vehicles. Mathematical model of automation of the process of diagnosing internal combustion engines of the YaMZ-238 family is presents in the article. Replacing real technical devices with their idealized models allows the widespread use of various mathematical methods. In this case, the internal combustion engine of the YaMZ-238 family, as the object of diagnosis, is presented in the form of a «black box», the input and output parameters of which have a finite set of values. In general, the mathematical model is a system of functional relationships between each diagnostic signal and structural parameters. For internal combustion engines of the YaMZ-238 family, a diagnostic matrix has been compiled, which includes a list of faults and signs of faults. It is determined that the process of diagnosis based on the model of the diagnostic object is possible if the inverse transformation of the number of signs of malfunctions into the number of structural parameters (malfunctions) of the object was unambiguous. The proposed mathematical model of automation of the process of diagnosing internal combustion engines of the family YaMZ-238 will detect faults of components and parts depending on their characteristics.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022072
Author(s):  
E Gubin ◽  
S Andriushchenko ◽  
K Mochalin

Abstract During the operation of internal combustion engines, deformation of the cylinder sleeve is possible, which causes its premature wear during the operation of the “piston ring – sleeve” pair. Imagine the sleeve as a two-stage hollow cylinder with forces applied to it, which cause deflection in the section. It can be assumed that if the greatest deformation of the cylinder is in the section of the application of forces, then with distance from this place it will decrease. At some distance from the point of application of forces, the deflection of the sleeve will be equal to zero. It is required to simulate a mathematical formula that would make it possible to evaluate the possibility of estimating the value depending on the basic geometric dimensions of the cylinder sleeve. A mathematical model of the deformation process of a hollow two-stage sleeve of an internal combustion engine has been developed, an analytical dependence has been obtained for the value of the “neutral” section depending on the main geometrical dimensions of the cylinder sleeve of the engine, a rather extensive analysis of the influence of various parameters on the value of the “neutral” section has been carried out.


Sign in / Sign up

Export Citation Format

Share Document