scholarly journals Reconstruction of the boundary condition for the heat conduction equation of fractional order

2015 ◽  
Vol 19 (suppl. 1) ◽  
pp. 35-42 ◽  
Author(s):  
Rafal Brociek ◽  
Damian Slota

2018 ◽  
Vol 13 (1) ◽  
pp. 5 ◽  
Author(s):  
Rafał Brociek ◽  
Damian Słota

This paper describes an algorithm for reconstruction the boundary condition and order of derivative for the heat conduction equation of fractional order. This fractional order derivative was applied to time variable and was defined as the Caputo derivative. The heat transfer coefficient, occurring in the boundary condition of the third kind, was reconstructed. Additional information for the considered inverse problem is given by the temperature measurements at selected points of the domain. The direct problem was solved by using the implicit finite difference method. To minimize functional defining the error of approximate solution an Artificial Bee Colony (ABC) algorithm and Nelder-Mead method were used. In order to stabilize the procedure the Tikhonov regularization was applied. The paper presents examples to illustrate the accuracy and stability of the presented algorithm.



Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 409
Author(s):  
Dejian Huang ◽  
Yanqing Li ◽  
Donghe Pei

This paper investigates the boundary value in the heat conduction problem by a variational iteration method. Applying the iteration method, a sequence of convergent functions is constructed, the limit approximates the exact solution of the heat conduction equation in a few iterations using only the initial condition. This method does not require discretization of the variables. Numerical results show that this method is quite simple and straightforward for models that are currently under research.



2017 ◽  
Vol 21 (5) ◽  
pp. 2255-2266
Author(s):  
Ayhan Yilmazer ◽  
Cemil Kocar

In this paper heat conduction equation for an eccentric spherical annulus with the inner surface kept at a constant temperature and the outer surface subjected to convection is solved analytically. Eccentric problem domain is first transformed into a concentric domain via formulating the problem in bispherical co-ordinate system. Since an analytical Green?s function for the heat conduction equation in bispherical co-ordinate for an eccentric sphere subject to boundary condition of third type can not be found, an analytical Green's function obtained for Dirichlet boundary condition is employed in the solution. Utilizing this Green's function yields a boundary integral equation for the unknown normal derivative of the surface temperature distribution. The resulting boundary integral equation is solved analytically using method of moments. The method has been applied to heat generating eccentric spherical annuli and results are compared to the simulation results of FLUENT CFD code. A very good agreement was observed in temperature distribution computations for various geometrical configurations and a wide range of Biot number. Variation of heat dissipation with radii and eccentricity ratios are studied and a very good agreement with FLUENT has been observed



Sign in / Sign up

Export Citation Format

Share Document