scholarly journals A stage-specific open reading frame from three-day old adult worms ofTrichinella spiralisencodes zinc-finger motifs

Parasite ◽  
2005 ◽  
Vol 12 (2) ◽  
pp. 151-157 ◽  
Author(s):  
X.P. Zhu ◽  
P. Garcia-Reyna ◽  
B.Q. Fu ◽  
J. Yang ◽  
C.V. Li ◽  
...  
1992 ◽  
Vol 12 (6) ◽  
pp. 2633-2643
Author(s):  
S S Wang ◽  
D R Stanford ◽  
C D Silvers ◽  
A K Hopper

STP1 is an unessential yeast gene involved in the removal of intervening sequences from some, but not all, families of intervening sequence-containing pre-tRNAs. Previously, we proposed that STP1 might encode a product that generates pre-tRNA conformations efficiently recognized by tRNA-splicing endonuclease. To test the predictions of this model, we have undertaken a molecular analysis of the STP1 gene and its products. The STP1 locus is located on chromosome IV close to at least two other genes involved in RNA splicing: PRP3 and SPP41. The STP1 open reading frame (ORF) could encode a peptide of 64,827 Da; however, inspection of putative transcriptional and translational regulatory signals and mapping of the 5' ends of mRNA provide evidence that translation of the STP1 ORF usually initiates at a second AUG to generate a protein of 58,081 Da. The STP1 ORF contains three putative zinc fingers. The first of these closely resembles both the DNA transcription factor consensus and the Xenopus laevis p43 RNA-binding protein consensus. The third motif more closely resembles the fingers found in spliceosomal proteins. Employing antisera to the endogenous STP1 protein and to STP1-LacZ fusion proteins, we show that the STP1 protein is localized to nuclei. The presence of zinc finger motifs and the nuclear location of the STP1 protein support the model that this gene product is involved directly in pre-tRNA splicing.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 191-199 ◽  
Author(s):  
Sandra Masloff ◽  
Stefanie Pöggeler ◽  
Ulrich Kück

Abstract During sexual morphogenesis, the filamentous ascomycete Sordaria macrospora differentiates into multicellular fruiting bodies called perithecia. Previously it has been shown that this developmental process is under polygenic control. To further understand the molecular mechanisms involved in fruiting body formation, we generated the protoperithecia forming mutant pro1, in which the normal development of protoperithecia into perithecia has been disrupted. We succeeded in isolating a cosmid clone from an indexed cosmid library, which was able to complement the pro1- mutation. Deletion analysis, followed by DNA sequencing, subsequently demonstrated that fertility was restored to the pro1 mutant by an open reading frame encoding a 689-amino-acid polypeptide, which we named PRO1. A region from this polypeptide shares significant homology with the DNA-binding domains found in fungal C6 zinc finger transcription factors, such as the GAL4 protein from yeast. However, other typical regions of C6 zinc finger proteins, such as dimerization elements, are absent in PRO1. The involvement of the pro1+ gene in fruiting body development was further confirmed by trying to complement the mutant phenotype with in vitro mutagenized and truncated versions of the pro1 open reading frame. Southern hybridization experiments also indicated that pro1+ homologues are present in other sexually propagating filamentous ascomycetes.


1995 ◽  
Vol 108 (11) ◽  
pp. 3377-3387 ◽  
Author(s):  
W.G. Whitfield ◽  
M.A. Chaplin ◽  
K. Oegema ◽  
H. Parry ◽  
D.M. Glover

Microinjection of a bacterially expressed, TRITC labelled fragment of the centrosome-associated protein CP190 of Drosophila melanogaster, into syncytial Drosophila embryos, shows it to associate with the centrosomes during mitosis, and to relocate to chromatin during interphase. Indirect immunofluorescence staining of salivary gland chromosomes of third instar Drosophila larvae, with antibodies specific to CP190, indicate that the protein is associated with a large number of loci on these interphase polytene chromosomes. The 190 kDa CP190 protein is encoded by a 4.1 kb transcript with a single, long open reading frame specifying a polypeptide of 1,096 amino acids, with a molecular mass of 120 kDa, and an isoelectric point of 4.5. The central region of the predicted amino acid sequence of the CP190 protein contains four CysX2CysX12HisX4His zinc-finger motifs which are similar to those described for several well characterised DNA binding proteins. The data suggest that the function of CP190 involves cell cycle dependent associations with both the centrosome, and with specific chromosomal loci.


1992 ◽  
Vol 12 (6) ◽  
pp. 2633-2643 ◽  
Author(s):  
S S Wang ◽  
D R Stanford ◽  
C D Silvers ◽  
A K Hopper

STP1 is an unessential yeast gene involved in the removal of intervening sequences from some, but not all, families of intervening sequence-containing pre-tRNAs. Previously, we proposed that STP1 might encode a product that generates pre-tRNA conformations efficiently recognized by tRNA-splicing endonuclease. To test the predictions of this model, we have undertaken a molecular analysis of the STP1 gene and its products. The STP1 locus is located on chromosome IV close to at least two other genes involved in RNA splicing: PRP3 and SPP41. The STP1 open reading frame (ORF) could encode a peptide of 64,827 Da; however, inspection of putative transcriptional and translational regulatory signals and mapping of the 5' ends of mRNA provide evidence that translation of the STP1 ORF usually initiates at a second AUG to generate a protein of 58,081 Da. The STP1 ORF contains three putative zinc fingers. The first of these closely resembles both the DNA transcription factor consensus and the Xenopus laevis p43 RNA-binding protein consensus. The third motif more closely resembles the fingers found in spliceosomal proteins. Employing antisera to the endogenous STP1 protein and to STP1-LacZ fusion proteins, we show that the STP1 protein is localized to nuclei. The presence of zinc finger motifs and the nuclear location of the STP1 protein support the model that this gene product is involved directly in pre-tRNA splicing.


1991 ◽  
Vol 266 (16) ◽  
pp. 10050-10053
Author(s):  
K.E. Hill ◽  
R.S. Lloyd ◽  
J.G. Yang ◽  
R. Read ◽  
R.F. Burk

Sign in / Sign up

Export Citation Format

Share Document