scholarly journals Defective boundary conditions applied to multiscale analysis of blood flow

2005 ◽  
Vol 14 ◽  
pp. 89-99 ◽  
Author(s):  
M. Fernández ◽  
A. Moura ◽  
C. Vergara
Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 9-17
Author(s):  
Andrea Natale Impiombato ◽  
Giorgio La Civita ◽  
Francesco Orlandi ◽  
Flavia Schwarz Franceschini Zinani ◽  
Luiz Alberto Oliveira Rocha ◽  
...  

As it is known, the Womersley function models velocity as a function of radius and time. It has been widely used to simulate the pulsatile blood flow through circular ducts. In this context, the present study is focused on the introduction of a simple function as an approximation of the Womersley function in order to evaluate its accuracy. This approximation consists of a simple quadratic function, suitable to be implemented in most commercial and non-commercial computational fluid dynamics codes, without the aid of external mathematical libraries. The Womersley function and the new function have been implemented here as boundary conditions in OpenFOAM ESI software (v.1906). The discrepancy between the obtained results proved to be within 0.7%, which fully validates the calculation approach implemented here. This approach is valid when a simplified analysis of the system is pointed out, in which flow reversals are not contemplated.


Author(s):  
Mitsuaki Kato ◽  
Kenji Hirohata ◽  
Akira Kano ◽  
Shinya Higashi ◽  
Akihiro Goryu ◽  
...  

Non invasive fractional flow reserve derived from CT coronary angiography (CT-FFR) has to date been typically performed using the principles of computational fluid analysis in which a lumped parameter coronary vascular bed model is assigned to represent the impedance of the downstream coronary vascular networks absent in the computational domain for each coronary outlet. This approach may have a number of limitations. It may not account for the impact of the myocardial contraction and relaxation during the cardiac cycle, patient-specific boundary conditions for coronary artery outlets and vessel stiffness. We have developed a novel approach based on 4D-CT image tracking (registration) and structural and fluid analysis based on one dimensional mechanical model, to address these issues. In our approach, we analyzed the deformation variation of vessels and the volume variation of vessels to better define boundary conditions and stiffness of vessels. We focused on the blood flow and vessel deformation of coronary arteries and aorta near coronary arteries in the diastolic cardiac phase from 70% to 100 %. The blood flow variation of coronary arteries relates to the deformation of vessels, such as expansion and contraction of the cross-sectional area, during this period where resistance is stable, pressure loss is approximately proportional to flow. We used a statistical estimation method based on a hierarchical Bayes model to integrate 4D-CT measurements and structural and fluid analysis data. Under these analysis conditions, we performed structural and fluid analysis to determine pressure, flow rate and CT-FFR. Furthermore, the reduced-order model based on fluid analysis was studied in order to shorten the computational time for 4D-CT-FFR analysis. The consistency of this method has been verified by a comparison of 4D-CT-FFR analysis results derived from five clinical 4D-CT datasets with invasive measurements of FFR. Additionally, phantom experiments of flexible tubes with and without stenosis using pulsating pumps, flow sensors and pressure sensors were performed. Our results show that the proposed 4D-CT-FFR analysis method has the potential to accurately estimate the effect of coronary artery stenosis on blood flow.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nur Husnina Saadun ◽  
Nurul Aini Jaafar ◽  
Md Faisal Md Basir ◽  
Ali Anqi ◽  
Mohammad Reza Safaei

Purpose The purpose of this study is to solve convective diffusion equation analytically by considering appropriate boundary conditions and using the Taylor-Aris method to determine the solute concentration, the effective and relative axial diffusivities. Design/methodology/approach >An analysis has been conducted on how body acceleration affects the dispersion of a solute in blood flow, which is known as a Bingham fluid, within an artery. To solve the system of differential equations analytically while validating the target boundary conditions, the blood velocity is obtained. Findings The blood velocity is impacted by the presence of body acceleration, as well as the yield stress associated with Casson fluid and as such, the process of dispersing the solute is distracted. It graphically illustrates how the blood velocity and the process of solute dispersion are affected by various factors, including the amplitude and lead angle of body acceleration, the yield stress, the gradient of pressure and the Peclet number. Originality/value It is witnessed that the blood velocity, the solute concentration and also the effective and relative axial diffusivities experience a drop when either of the amplitude, lead angle or the yield stress rises.


Author(s):  
Shigefumi Tokuda ◽  
Takeshi Unemura ◽  
Marie Oshima

Cerebrovascular disorder such as subarachnoid hemorrhage (SAH) is 3rd position of the cause of death in Japan [1]. Its initiation and growth are reported to depend on hemodynamic factors, particularly on wall shear stress or blood pressure induced by blood flow. In order to investigate the information on the hemodynamic quantities in the cerebral vascular system, the authors have been developing a computational tool using patient-specific modeling and numerical simulation [2]. In order to achieve an in vivo simulation of living organisms, it is important to apply appropriate physiological conditions such as physical properties, models, and boundary conditions. Generally, the numerical simulation using a patient-specific model is conducted for a localized region near the research target. Although the analysis region is only a part of the circulatory system, the simulation has to include the effects from the entire circulatory system. Many studies have carried out to derive the boundary conditions to model in vivo environment [3–5]. However, it is not easy to obtain the biological data of cerebral arteries due to head capsule.


2006 ◽  
Vol 39 ◽  
pp. S431
Author(s):  
I.E. Vignon-Clementel ◽  
C.A. Figueroa ◽  
A.L. Marsden ◽  
J.A. Feinstein ◽  
K.E. Jansen ◽  
...  

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Polina A. Segalova ◽  
K. T. Venkateswara Rao ◽  
Christopher K. Zarins ◽  
Charles A. Taylor

As endovascular treatment of abdominal aortic aneurysms (AAAs) gains popularity, it is becoming possible to treat certain challenging aneurysmal anatomies with endografts relying on suprarenal fixation. In such anatomies, the bare struts of the device may be placed across the renal artery ostia, causing partial obstruction to renal artery blood flow. Computational fluid dynamics (CFD) was used to simulate blood flow from the aorta to the renal arteries, utilizing patient-specific boundary conditions, in three patient models and calculate the degree of shear-based blood damage (hemolysis). We used contrast-enhanced computed tomography angiography (CTA) data from three AAA patients who were treated with a novel endograft to build patient-specific models. For each of the three patients, we constructed a baseline model and endoframe model. The baseline model was a direct representation of the patient’s 30-day post-operative CTA data. This model was then altered to create the endoframe model, which included a ring of metallic struts across the renal artery ostia. CFD was used to simulate blood flow, utilizing patient-specific boundary conditions. Pressures, flows, shear stresses, and the normalized index of hemolysis (NIH) were quantified for all patients. The overall differences between the baseline and endoframe models for all three patients were minimal, as measured though pressure, volumetric flow, velocity, and shear stress. The average NIH across the three baseline and endoframe models was 0.002 and 0.004, respectively. Results of CFD modeling show that the overall disturbance to flow caused by the presence of the endoframe struts is minimal. The magnitude of the NIH in all models was well below the accepted design and safety threshold for implantable medical devices that interact with blood flow.


Author(s):  
Andrea S. Les ◽  
Janice J. Yeung ◽  
Phillip M. Young ◽  
Robert J. Herfkens ◽  
Ronald L. Dalman ◽  
...  

Hemodynamic forces are thought to play a critical role in abdominal aortic aneurysm (AAA) formation and growth, as well as in the migration and failure of aortic stent grafts. Computational simulation of blood flow enables the study of such hemodynamic forces; however, these simulations require accurate geometries and boundary conditions, usually in the form of flow and pressure data at specific locations. Although hundreds of computed tomography (CT) and magnetic resonance (MR) imaging studies of AAA geometry are performed daily in the clinical setting, flow information is difficult to obtain: It is not possible to reliably measure flow using CT, and while phase-contrast MRI (PC-MRI) can measure velocities, it is rarely used clinically for AAA patients. As a result, many AAA blood flow simulations use highly resolved patient-specific geometries, but may utilize literature-derived flows for inlet boundary conditions from a single, unrelated, sometimes healthy person of dissimilar body mass.


Sign in / Sign up

Export Citation Format

Share Document