scholarly journals Estramustine phosphate inhibits germinal vesicle breakdown and induces depolymerization of microtubules in mouse oocyte

1988 ◽  
Vol 28 (2A) ◽  
pp. 319-334 ◽  
Author(s):  
Hélène RIME ◽  
Catherine JESSUS ◽  
R. OZON
2016 ◽  
Author(s):  
Jessica Sanders ◽  
Ethan Bateson ◽  
Yuansong Yu ◽  
Michail Nomikos ◽  
Antony Lai ◽  
...  

2019 ◽  
Author(s):  
Di Xie ◽  
Juan Zhang ◽  
JinLi Ding ◽  
Jing Yang ◽  
Yan Zhang

Background. OLA1 is a member of the GTPase protein family, unlike other members, it can bind and hydrolyze ATP more efficiently than GTP. OLA1 participates in cell proliferation, oxidative response and tumorigenesis. However, whether OLA1 is also required for oocyte meiosis is still unknown. Methods. In this study, the localization, expression, and functions of OLA1 in the mouse oocyte meiosis were examined. Immunofluorescent and confocal microscopy were used to explore the location pattern of OLA1 in the mouse oocyte. Moreover, nocodazole treatment was used to confirm the spindle-like location of OLA1 during mouse meiosis. Western blot was used to explore the expression pattern of OLA1 in the mouse oocyte. Microinjection of siRNA was used to explore the OLA1 functions in the mouse oocyte meiosis. In addition, chromosome spreading was used to investigate the spindle assembly checkpoint (SAC) activity. Results. Immunofluorescent staining showed that OLA1 evenly distributed in the cytoplasm at germinal vesicle (GV) stage. After meiosis resumption (GVBD), OLA1 co-localized with spindles, which was further identified by nocodazole treatment experiments. Knockdown of OLA1 impaired the germinal vesicle breakdown progression and finally resulted in a lower polar body extrusion rate. Immunofluorescence analysis indicated that knockdown of OLA1 led to abnormal spindle assembly, which was evidenced by multipolar spindles in OLA1-RNAi-oocytes. After 6 h post-GVBD in culture, an increased proportion of oocyte which has precociously entered into anaphase/telephase I (A/TI) was observed in OLA1-knockdown oocytes, suggesting that loss of OLA1 resulted in the premature segregation of homologous chromosomes. In addition, the chromosome spread analysis suggested that OLA1 knockdown induced premature anaphase onset was due to the precocious inactivation of SAC. Taken together, we concluded that OLA1 plays important role in GVBD, spindle assembly and SAC activation maintenance in oocyte meiosis.


2000 ◽  
Vol 6 (S2) ◽  
pp. 964-965
Author(s):  
Qing-Yuan Sun ◽  
Randall S. Prather ◽  
Heide Schatten

Mammalian oocytes are arrested at the diplotene stage of the first meiotic division. Release of oocytes from their follicles induces meiotic resumption characterized by germinal vesicle breakdown (GVBD), followed by the chromosome formation and metaphase I spindle organization and finally the extrusion the first polar body. Recently it was shown that cellpermeant antioxidants significantly inhibit spontaneous resumption of meiosis in mouse oocytes, which may indicate a role of oxygen radicals in oocyte maturation. The regulation of mouse oocyte meiosis resumption is different from that of large domestic animals in that GVBD is independent of Ca2+ and protein synthesis. The present study investigated the influence of two cell-permeant antioxidants, 2(3)-ter-butyl-4-hydroxyanisole (BHA) and nordihydroguaiaretic acid (NDGA), on porcine oocyte meiosis resumption, chromatin behavior and spindle assembly. Our findings revealed a different role of antioxidants in porcine oocyte meiosis resumption than in mouse oocyte maturation.


Reproduction ◽  
2005 ◽  
Vol 129 (2) ◽  
pp. 229-234 ◽  
Author(s):  
Zhen-Yu Zheng ◽  
Qing-Zhang Li ◽  
Da-Yuan Chen ◽  
Heide Schatten ◽  
Qing-Yuan Sun

The protein kinase Cs (PKCs) are a family of Ser/Thr protein kinases categorized into three subfamilies: classical, novel, and atypical. The phosphorylation of PKC in germ cells is not well defined. In this study, we described the subcellular localization of phopho-PKC in the process of mouse oocyte maturation, fertilization, and early embryonic mitosis. Confocal microscopy revealed that phospho-PKC (pan) was distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, phospho-PKC was localized in the vicinity of the condensed chromosomes, distributed in the whole meiotic spindle, and concentrated at the spindle poles. After metaphase I, phospho-PKC was translocated gradually to the spindle mid-zone during emission of the first polar body. After sperm penetration and electrical activation, the distribution of phospho-PKC was moved from the spindle poles to the spindle mid-zone. After the extrusion of the second polar body (PB2) phospho-PKC was localized in the area between the oocyte and the PB2. In fertilized eggs, phospho-PKC was concentrated in the pronuclei except for the nucleolus. Phospho-PKC was dispersed after pronuclear envelope breakdown, but distributed on the entire spindle at mitotic metaphase. The results suggest that PKC activation may play important roles in regulating spindle organization and stabilization, polar-body extrusion, and nuclear activity during mouse oocyte meiosis, fertilization, and early embryonic mitosis.


2013 ◽  
Vol 19 (1) ◽  
pp. 190-200 ◽  
Author(s):  
Shang-Wu Yang ◽  
Hao Huang ◽  
Chen Gao ◽  
Lei Chen ◽  
Shu-Tao Qi ◽  
...  

AbstractIt is well known that extracellular signal-regulated kinase 8 (ERK8) plays pivotal roles in various mitotic events. But its physiological roles in oocyte meiotic maturation remain unclear. In this study, we found that although no specific ERK8 signal was detected in oocyte at the germinal vesicle stage, ERK8 began to migrate to the periphery of chromosomes shortly after germinal vesicle breakdown. At prometaphase I, metaphase I (MI), anaphase I, telophase I, and metaphase II (MII) stages, ERK8 was stably detected at the spindles. By taxol treatment, we clarified that the ERK8 signal was stained on the spindle fibers as well as microtubule asters in MI and MII oocytes. In fertilized eggs, the ERK8 signal was not observed in the two pronuclei stages. At prometaphase, metaphase, and anaphase of the first mitosis, ERK8 was detected on the mitotic spindle. ERK8 knock down by antibody microinjection and specific siRNA caused abnormal spindles, failed chromosome congression, and decreased first polar body extrusion. Taken together, our results suggest that ERK8 plays an important role in spindle organization during mouse oocyte meiotic maturation and early embryo cleavage.


Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 45-50
Author(s):  
Zhuoni Xiao ◽  
Jiali Peng ◽  
Meiting Xie ◽  
Jing Yang ◽  
Wangming Xu

SummaryEstablishment of cellular polarity is one of the key events during oocyte maturation. Inscuteable (Insc) has been identified as a key regulator of cell polarity during asymmetric division in Drosophila. However, the function of its evolutionarily conserved mammalian homologue, mInscuteable (mInsc), in mouse meiotic maturation is not clear. In this study, we investigated the roles of mInsc in mouse oocyte maturation. mInsc was detected at all stages of oocyte maturation. The protein level of mInsc was slightly higher at the germinal vesicle breakdown (GVBD) stage and remained constant during mouse oocyte maturation. The subcellular localization of mInsc overlapped with spindle microtubules. Disruption of microtubules and microfilaments caused changes in the localization of mInsc. Depletion or overexpression of mInsc significantly decreased the maturation rates of mouse oocytes. Depletion of mInsc significantly affected asymmetric division, spindle assembly, alignments of chromosomes and actin cap formation. Taken together, our results demonstrated that mInsc regulates meiotic spindle organization during mouse meiotic maturation.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8180 ◽  
Author(s):  
Di Xie ◽  
Juan Zhang ◽  
JinLi Ding ◽  
Jing Yang ◽  
Yan Zhang

Background OLA1 is a member of the GTPase protein family; unlike other members, it possess both GTPase and ATPase activities, and can bind and hydrolyze ATP more efficiently than GTP. OLA1 participates in cell proliferation, oxidative response, protein synthesis and tumorigenesis. However, whether OLA1 is also required for oocyte meiosis is still unknown. Methods In this study, the localization, expression, and functions of OLA1 in the mouse oocyte meiosis were examined. Immunofluorescent and confocal microscopy were used to explore the location pattern of OLA1 in the mouse oocyte. Moreover, nocodazole treatment was used to confirm the spindle-like location of OLA1 during mouse meiosis. Western blot was used to explore the expression pattern of OLA1 in the mouse oocyte. Microinjection of siRNA was used to explore the OLA1 functions in the mouse oocyte meiosis. In addition, chromosome spreading was used to investigate the spindle assembly checkpoint (SAC) activity. Results Immunofluorescent staining showed that OLA1 evenly distributed in the cytoplasm at germinal vesicle (GV) stage. After meiosis resumption (GVBD), OLA1 co-localized with spindles, which was further identified by nocodazole treatment experiments. Knockdown of OLA1 impaired the germinal vesicle breakdown progression and finally resulted in a lower polar body extrusion rate. Immunofluorescence analysis indicated that knockdown of OLA1 led to abnormal spindle assembly, which was evidenced by multipolar spindles in OLA1-RNAi-oocytes. After 6 h post-GVBD in culture, an increased proportion of oocyte which has precociously entered into anaphase/telephase I (A/TI) was observed in OLA1-knockdown oocytes, suggesting that loss of OLA1 resulted in the premature segregation of homologous chromosomes. In addition, the chromosome spread analysis suggested that OLA1 knockdown induced premature anaphase onset was due to the precocious inactivation of SAC. Taken together, we concluded that OLA1 plays important role in GVBD, spindle assembly and SAC activation maintenance in oocyte meiosis.


Sign in / Sign up

Export Citation Format

Share Document