chromosome formation
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 3)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Vol 134 (23) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Joanna Wenda is first author on ‘ Mitotic chromosome condensation requires phosphorylation of the centromeric protein KNL-2 in C. elegans’, published in JCS. Joanna is a PhD student (in the process of graduating) in the lab of Florian Steiner at Department of Molecular Biology, University of Geneva, Geneva, Switzerland, investigating chromatin and cell biology, specifically centromere maintenance and mitotic chromosome formation.



2021 ◽  
Vol 376 (1833) ◽  
pp. 20200099
Author(s):  
Artem P. Lisachov ◽  
Katerina V. Tishakova ◽  
Svetlana A. Romanenko ◽  
Anna S. Molodtseva ◽  
Dmitry Yu. Prokopov ◽  
...  

Whole-chromosome fusions play a major role in the karyotypic evolution of reptiles. It has been suggested that certain chromosomes tend to fuse with sex chromosomes more frequently than others. However, the comparative genomic synteny data are too scarce to draw strong conclusions. We obtained and sequenced chromosome-specific DNA pools of Sceloporus malachiticus , an iguanian species which has experienced many chromosome fusions. We found that four of seven lineage-specific fusions involved sex chromosomes, and that certain syntenic blocks which constitute the sex chromosomes, such as the homologues of the Anolis carolinensis chromosomes 11 and 16, are repeatedly involved in sex chromosome formation in different squamate species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, we performed a synaptonemal complex analysis in this species and in Sceloporus variabilis (2 n = 34). It revealed that the sex chromosomes in S. malachiticus had two distal pseudoautosomal regions and a medial differentiated region. We found that multiple fusions little affected the recombination rate in S. malachiticus . Our data confirm more frequent involvement of certain chromosomes in sex chromosome formation, but do not reveal a connection between the gonosome–autosome fusions and the evolution of recombination rate. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.



2021 ◽  
Vol 376 (1833) ◽  
pp. 20200098
Author(s):  
Alexandr Sember ◽  
Petr Nguyen ◽  
Manolo F. Perez ◽  
Marie Altmanová ◽  
Petr Ráb ◽  
...  

Despite decades of cytogenetic and genomic research of dynamic sex chromosome evolution in teleost fishes, multiple sex chromosomes have been largely neglected. In this review, we compiled available data on teleost multiple sex chromosomes, identified major trends in their evolution and suggest further trajectories in their investigation. In a compiled dataset of 440 verified records of fish sex chromosomes, we counted 75 multiple sex chromosome systems with 60 estimated independent origins. We showed that male-heterogametic systems created by Y-autosome fusion predominate and that multiple sex chromosomes are over-represented in the order Perciformes. We documented a striking difference in patterns of differentiation of sex chromosomes between male and female heterogamety and hypothesize that faster W sex chromosome differentiation may constrain sex chromosome turnover in female-heterogametic systems. We also found no significant association between the mechanism of multiple sex chromosome formation and percentage of uni-armed chromosomes in teleost karyotypes. Last but not least, we hypothesized that interaction between fish populations, which differ in their sex chromosomes, can drive the evolution of multiple sex chromosomes in fishes. This underlines the importance of broader inter-population sampling in studies of fish sex chromosomes. This article is part of the theme issue ‘Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)’.



PLoS Genetics ◽  
2020 ◽  
Vol 16 (10) ◽  
pp. e1009155
Author(s):  
András Szilágyi ◽  
Viktor Péter Kovács ◽  
Eörs Szathmáry ◽  
Mauro Santos

Chromosomes are likely to have assembled from unlinked genes in early evolution. Genetic linkage reduces the assortment load and intragenomic conflict in reproducing protocell models to the extent that chromosomes can go to fixation even if chromosomes suffer from a replicative disadvantage, relative to unlinked genes, proportional to their length. Here we numerically show that chromosomes spread within protocells even if recurrent deleterious mutations affecting replicating genes (as ribozymes) are considered. Dosage effect selects for optimal genomic composition within protocells that carries over to the genic composition of emerging chromosomes. Lacking an accurate segregation mechanism, protocells continue to benefit from the stochastic corrector principle (group selection of early replicators), but now at the chromosome level. A remarkable feature of this process is the appearance of multigene families (in optimal genic proportions) on chromosomes. An added benefit of chromosome formation is an increase in the selectively maintainable genome size (number of different genes), primarily due to the marked reduction of the assortment load. The establishment of chromosomes is under strong positive selection in protocells harboring unlinked genes. The error threshold of replication is raised to higher genome size by linkage due to the fact that deleterious mutations affecting protocells metabolism (hence fitness) show antagonistic (diminishing return) epistasis. This result strengthens the established benefit conferred by chromosomes on protocells allowing for the fixation of highly specific and efficient enzymes.



Author(s):  
Joanna L Rifkin ◽  
Felix E G Beaudry ◽  
Zoë Humphries ◽  
Baharul I Choudhury ◽  
Spencer C H Barrett ◽  
...  

Abstract Classical models suggest that recombination rates on sex chromosomes evolve in a stepwise manner to localize sexually antagonistic variants in the sex in which they are beneficial, thereby lowering rates of recombination between X and Y chromosomes. However, it is also possible that sex chromosome formation occurs in regions with preexisting recombination suppression. To evaluate these possibilities, we constructed linkage maps and a chromosome-scale genome assembly for the dioecious plant Rumex hastatulus. This species has a polymorphic karyotype with a young neo-sex chromosome, resulting from a Robertsonian fusion between the X chromosome and an autosome, in part of its geographic range. We identified the shared and neo-sex chromosomes using comparative genetic maps of the two cytotypes. We found that sex-linked regions of both the ancestral and the neo-sex chromosomes are embedded in large regions of low recombination. Furthermore, our comparison of the recombination landscape of the neo-sex chromosome to its autosomal homolog indicates that low recombination rates mainly preceded sex linkage. These patterns are not unique to the sex chromosomes; all chromosomes were characterized by massive regions of suppressed recombination spanning most of each chromosome. This represents an extreme case of the periphery-biased recombination seen in other systems with large chromosomes. Across all chromosomes, gene and repetitive sequence density correlated with recombination rate, with patterns of variation differing by repetitive element type. Our findings suggest that ancestrally low rates of recombination may facilitate the formation and subsequent evolution of heteromorphic sex chromosomes.



Author(s):  
Tereza Gerguri ◽  
Xiao Fu ◽  
Yasutaka Kakui ◽  
Bhavin S. Khatri ◽  
Christopher Barrington ◽  
...  

AbstractUnderlying higher order chromatin organization are Structural Maintenance of Chromosomes (SMC) complexes, large protein rings that entrap DNA. The molecular mechanism by which SMC complexes organize chromatin is as yet incompletely understood. Two prominent models posit that SMC complexes actively extrude DNA loops (loop extrusion), or that they sequentially entrap two DNAs that come into proximity by Brownian motion (diffusion capture). To explore the implications of these two mechanisms, we perform biophysical simulations of a 3.76 Mb-long chromatin chain, the size of the long S. pombe chromosome I left arm. On it, the SMC complex condensin is modeled to perform loop extrusion or diffusion capture. We then compare computational to experimental observations of mitotic chromosome formation. Both loop extrusion and diffusion capture can result in native-like contact probability distributions. In addition, the diffusion capture model more readily recapitulates mitotic chromosome axis shortening and chromatin density enrichment. Diffusion capture can also explain why mitotic chromatin shows reduced, as well as more anisotropic, movements, features that lack support from loop extrusion. The condensin distribution within mitotic chromosomes, visualized by stochastic optical reconstruction microscopy (STORM), shows clustering predicted from diffusion capture. Our results inform the evaluation of current models of mitotic chromosome formation.



2020 ◽  
Vol 182 (12) ◽  
pp. 3023-3028
Author(s):  
Hongyan Chai ◽  
Weizhen Ji ◽  
Jiadi Wen ◽  
Autumn DiAdamo ◽  
Brittany Grommisch ◽  
...  


2020 ◽  
Vol 66 (5) ◽  
pp. 895-899 ◽  
Author(s):  
Jarno Mäkelä ◽  
David Sherratt

Abstract Structural maintenance of chromosomes (SMC) complexes are ancient and conserved molecular machines that organize chromosomes in all domains of life. We propose that the principles of chromosome folding needed to accommodate DNA inside a cell in an accessible form will follow similar principles in prokaryotes and eukaryotes. However, the exact contributions of SMC complexes to bacterial chromosome organization have been elusive. Recently, it was shown that the SMC homolog, MukBEF, organizes and individualizes the Escherichia coli chromosome by forming a filamentous axial core from which DNA loops emanate, similar to the action of condensin in mitotic chromosome formation. MukBEF action, along with its interaction with the partner protein, MatP, also facilitates chromosome individualization by directing opposite chromosome arms (replichores) to different cell halves. This contrasts with the situation in many other bacteria, where SMC complexes organise chromosomes in a way that the opposite replichores are aligned along the long axis of the cell. We highlight the similarities and differences of SMC complex contributions to chromosome organization in bacteria and eukaryotes, and summarize the current mechanistic understanding of the processes.



2020 ◽  
Author(s):  
Artem P. Lisachov ◽  
Katerina V. Tishakova ◽  
Svetlana A. Romanenko ◽  
Anna S. Molodtseva ◽  
Dmitry Yu. Prokopov ◽  
...  

AbstractThere is a growing body of evidence that the common ancestor of vertebrates had a bimodal karyotype, i.e. consisting of large macrochromosomes and small microchromosomes. This type of karyotype organization is preserved in most reptiles. However, certain species independently experience microchromosome fusions. The evolutionary forces behind this are unclear. We investigated the karyotype of the green spiny lizard, Sceloporus malachiticus, an iguana species which has 2n=22, whereas the ancestral karyotype of iguanas had 2n=36. We obtained and sequenced flow-sorted chromosome-specific DNA samples and found that most of the microchromosome fusions in this species involved sex chromosomes. We found that certain ancestral squamate chromosomes, such as the homologue of the Anolis carolinensis chromosome 11, are repeatedly involved in sex chromosome formation in different species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, and to study sex chromosome synapsis and recombination in meiosis, we performed synaptonemal complex analysis in this species and in S. variabilis, a related species with 2n=34. We found that in the species studied the recombination patterns correlate more with phylogeny than with the structure of the karyotype. The sex chromosomes had two distal pseudoautosomal regions and a medial differentiated region.



2020 ◽  
Vol 12 (5) ◽  
pp. 494-505
Author(s):  
Ryan Bracewell ◽  
Doris Bachtrog

Abstract The Drosophila obscura species group shows dramatic variation in karyotype, including transitions among sex chromosomes. Members of the affinis and pseudoobscura subgroups contain a neo-X chromosome (a fusion of the X with an autosome), and ancestral Y genes have become autosomal in species harboring the neo-X. Detailed analysis of species in the pseudoobscura subgroup revealed that ancestral Y genes became autosomal through a translocation to the small dot chromosome. Here, we show that the Y-dot translocation is restricted to the pseudoobscura subgroup, and translocation of ancestral Y genes in the affinis subgroup likely followed a different route. We find that most ancestral Y genes have translocated to unique autosomal or X-linked locations in different taxa of the affinis subgroup, and we propose a dynamic model of sex chromosome formation and turnover in the obscura species group. Our results suggest that Y genes can find unique paths to escape unfavorable genomic environments that form after sex chromosome–autosome fusions.



Sign in / Sign up

Export Citation Format

Share Document