Impaired cardiac excitation–contraction coupling in ventricular myocytes from Ames dwarf mice with IGF-I deficiency

2002 ◽  
Vol 12 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Jun Ren ◽  
Holly M Brown-Borg
2001 ◽  
Vol 169 (2) ◽  
pp. 389-396 ◽  
Author(s):  
A Perez-Romero ◽  
E Dialynas ◽  
F Salame ◽  
A Amores ◽  
L Vidarte ◽  
...  

High local GH-releasing hormone (GHRH) levels are capable of inducing transdifferentiation in salivary cells to synthesize GH. However, the factors implicated in this process remain unknown. To study this subject, normal and Ames dwarf mice were implanted in the submaxillary gland with a slow release pellet releasing 21 microgram GHRH (1-29)-NH(2)/day for 2 months. Control animals received placebo pellets at the same site. After 60 days, heart blood was collected and submaxillary glands were removed. Circulating levels of GH and IGF-I were significantly decreased (P<0.05) in dwarf mice in comparison with controls, and GHRH treatment did not modify either of these two parameters. Controls carrying GHRH pellets showed a significantly higher GH content (P<0.05) in the submaxillary gland than the placebo-treated normal mice. There were no differences between the IGF-I concentrations of placebo- and GHRH-treated salivary tissue from normal mice. Analysis of GH mRNA by RT-PCR followed by Southern blot revealed that GH transcripts were present in the salivary gland samples carrying the placebo pellets in both normal and dwarf mice. The expression of GH was significantly (P<0.05) increased by the GHRH pellets in salivary tissue from normal mice, but not in submaxillary glands from dwarf mice. Pit-1 mRNA was not detected in the GHRH-treated glands of normal and dwarf mice by RT-PCR or by Southern blot. Using these highly sensitive methods, we have been able to detect the transcription of both GH and Pit-1 in pituitaries from Pit-1-deficient Ames dwarf mice. The present experiment demonstrates that salivary tissue synthesizes GH when it is exposed to the influence of GHRH. Both basal and GHRH-induced salivary GH expression appear to be independent of Pit-1.


2010 ◽  
Vol 226 (1) ◽  
pp. 1-15 ◽  
Author(s):  
George S.B. Williams ◽  
Gregory D. Smith ◽  
Eric A. Sobie ◽  
M. Saleet Jafri

1998 ◽  
Vol 89 (6) ◽  
pp. 1532-1542 ◽  
Author(s):  
Noriaki Kanaya ◽  
Daniel R. Zakhary ◽  
Paul A. Murray ◽  
Derek S. Damron

Background Our objective was to elucidate the direct effects of fentanyl and morphine on cardiac excitation-contraction coupling using individual, field-stimulated rat ventricular myocytes. Methods Freshly isolated myocytes were loaded with fura-2 and field stimulated (0.3 Hz) at 28 degrees C. Amplitude and timing of intracellular Ca2+ concentration (at a 340:380 ratio) and myocyte shortening (video edge detection) were monitored simultaneously in individual cells. Real time Ca2+ uptake into isolated sarcoplasmic reticulum vesicles was measured using fura-2 free acid in the extravesicular compartment. Results The authors studied 120 cells from 30 rat hearts. Fentanyl (30-1,000 nM) caused dose-dependent decreases in peak intracellular Ca2+ concentration and shortening, whereas morphine (3-100 microM) decreased shortening without a concomitant decrease in the Ca2+ transient. Fentanyl prolonged the time to peak and to 50% recovery for shortening and the Ca2+ transient, whereas morphine only prolonged the timing parameters for shortening. Morphine (100 microM), but not fentanyl (1 microM), decreased the amount of Ca2+ released from intracellular stores in response to caffeine in intact cells, and it inhibited the rate of Ca2+ uptake in isolated sarcoplasmic reticulum vesicles. Fentanyl and morphine both caused a downward shift in the dose-response curve to extracellular Ca2+ for shortening, with no concomitant effect on the Ca2+ transient. Conclusions Fentanyl and morphine directly depress cardiac excitation-contraction coupling at the cellular level. Fentanyl depresses myocardial contractility by decreasing the availability of intracellular Ca2+ and myofilament Ca2+ sensitivity. In contrast, morphine depresses myocardial contractility primarily by decreasing myofilament Ca2+ sensitivity.


Endocrinology ◽  
2005 ◽  
Vol 146 (3) ◽  
pp. 1138-1144 ◽  
Author(s):  
Liou Y. Sun ◽  
M. Steven Evans ◽  
Jenny Hsieh ◽  
Jacob Panici ◽  
Andrzej Bartke

Neurogenesis occurs throughout adult life in the dentate gyrus of mammalian hippocampus and has been suggested to play an important role in cognitive function. Multiple trophic factors including IGF-I have been demonstrated to regulate hippocampal neurogenesis. Ames dwarf mice live considerably longer than normal animals and maintain physiological function at youthful levels, including cognitive function, despite a deficiency of circulating GH and IGF-I. Here we show an increase in numbers of newly generated cells [bromodeoxyuridine (BrdU) positive] and newborn neurons (neuronal nuclear antigen and BrdU positive) in the dentate gyrus of adult dwarf mice compared with normal mice using BrdU labeling. Despite the profound suppression of hippocampal GH expression, hippocampal IGF-I protein levels are up-regulated and the corresponding mRNAs are as high in Ames dwarf as in normal mice. Our results suggest that local/hippocampal IGF-I expression may have induced the increase in hippocampal neurogenesis, and increased neurogenesis might contribute to the maintenance of youthful levels of cognitive function during aging in these long-lived animals.


2015 ◽  
Vol 282 (1800) ◽  
pp. 20141989 ◽  
Author(s):  
H. A. Shiels ◽  
G. L. J. Galli ◽  
B. A. Block

Understanding the physiology of vertebrate thermal tolerance is critical for predicting how animals respond to climate change. Pacific bluefin tuna experience a wide range of ambient sea temperatures and occupy the largest geographical niche of all tunas. Their capacity to endure thermal challenge is due in part to enhanced expression and activity of key proteins involved in cardiac excitation–contraction coupling, which improve cardiomyocyte function and whole animal performance during temperature change. To define the cellular mechanisms that enable bluefin tuna hearts to function during acute temperature change, we investigated the performance of freshly isolated ventricular myocytes using confocal microscopy and electrophysiology. We demonstrate that acute cooling and warming (between 8 and 28°C) modulates the excitability of the cardiomyocyte by altering the action potential (AP) duration and the amplitude and kinetics of the cellular Ca 2+ transient. We then explored the interactions between temperature, adrenergic stimulation and contraction frequency, and show that when these stressors are combined in a physiologically relevant way, they alter AP characteristics to stabilize excitation–contraction coupling across an acute 20°C temperature range. This allows the tuna heart to maintain consistent contraction and relaxation cycles during acute thermal challenges. We hypothesize that this cardiac capacity plays a key role in the bluefin tunas' niche expansion across a broad thermal and geographical range.


2005 ◽  
Vol 288 (3) ◽  
pp. R607-R614 ◽  
Author(s):  
K. M. Dibb ◽  
C. L. Hagarty ◽  
A. S. I. Loudon ◽  
A. W. Trafford

In mammals, changes in photoperiod regulate a diverse array of physiological and behavioral processes, an example of which in the Siberian hamster ( Phodopus sungorus) is the expression of bouts of daily torpor following prolonged exposure to a short photoperiod. During torpor, body temperature drops dramatically; however, unlike in nonhibernating or nontorpid species, the myocardium retains the ability to contract and is resistant to the development of arrhythmias. In the present study, we sought to determine whether exposure to a short photoperiod results in alterations to cardiac excitation-contraction coupling, thus potentially enabling the heart to survive periods of low temperature during torpor. Experiments were performed on single ventricular myocytes freshly isolated from the hearts of Siberian hamsters that had been exposed to either 12 wk of short-day lengths (SD) or 12 wk of long-day lengths (LD). In SD-acclimated animals, the amplitude of the systolic Ca2+ transient was increased (e.g., from 142 ± 17 nmol/l in LD to 229 ± 31 nmol/l in SD at 4 Hz; P < 0.001). The increased Ca2+ transient amplitude in the SD-acclimated animals was not associated with any change in the shape or duration of the action potential. However, sarcoplasmic reticulum Ca2+ content measured after current-clamp stimulation was increased in the SD-acclimated animals (at 4 Hz, 110 ± 5 vs. 141 ± 15 μmol/l, P < 0.05). We propose that short photoperiods reprogram the function of the cardiac sarcoplasmic reticulum, resulting in an increased Ca2+ content, and that this may be a necessary precursor for maintenance of cardiac function during winter torpor.


2004 ◽  
Vol 287 (3) ◽  
pp. H1029-H1038 ◽  
Author(s):  
Scott A. Grandy ◽  
Eileen M. Denovan-Wright ◽  
Gregory R. Ferrier ◽  
Susan E. Howlett

This study investigated cardiac excitation-contraction coupling at 37°C in transgenic mice with cardiac-specific overexpression of human β2-adrenergic receptors (TG4 mice). In field-stimulated myocytes, contraction was significantly greater in TG4 compared with wild-type (WT) ventricular myocytes. In contrast, when duration of depolarization was controlled with rectangular voltage clamp steps, contraction amplitudes initiated by test steps were the same in WT and TG4 myocytes. When cells were voltage clamped with action potentials simulating TG4 and WT action potential configurations, contractions were greater with long TG4 action potentials and smaller with shorter WT action potentials, which suggests an important role for action potential configuration. Interestingly, peak amplitude of L-type Ca2+ current ( ICa-L) initiated by rectangular test steps was reduced, although the voltage dependencies of contractions and currents were not altered. To explore the basis for the altered relation between contraction and ICa-L, Ca2+ concentrations were measured in myocytes loaded with fura 2. Diastolic concentrations of free Ca2+ and amplitudes of Ca2+ transients were similar in voltage-clamped myocytes from WT and TG4 mice. However, sarcoplasmic reticulum (SR) Ca2+ content assessed with the rapid application of caffeine was elevated in TG4 cells. Increased SR Ca2+ was accompanied by increased frequency and amplitudes of spontaneous Ca2+ sparks measured at 37°C with fluo 3. These observations suggest that the gain of Ca2+-induced Ca2+ release is increased in TG4 myocytes. Increased gain counteracts the effects of decreased amplitude of ICa-L in voltage-clamped myocytes and likely contributes to increased contraction amplitudes in field-stimulated TG4 myocytes.


2008 ◽  
Vol 295 (5) ◽  
pp. H1882-H1894 ◽  
Author(s):  
Anna Csiszar ◽  
Nazar Labinskyy ◽  
Viviana Perez ◽  
Fabio A. Recchia ◽  
Andrej Podlutsky ◽  
...  

Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2•− and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2•− and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2•− and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document