Two implantable rotary blood pumps for biventricular heart failure

2013 ◽  
Vol 61 (S 01) ◽  
Author(s):  
T Krabatsch ◽  
E Hennig ◽  
E Potapov ◽  
A Stepanenko ◽  
T Drews ◽  
...  
2018 ◽  
Vol 66 (9) ◽  
pp. 767-779 ◽  
Author(s):  
Daniel Rüschen ◽  
Sebastian Opitz ◽  
Philip von Platen ◽  
Leonie Korn ◽  
Steffen Leonhardt ◽  
...  

Abstract Left ventricular assist devices (LVADs) have become a viable alternative to heart transplantation in heart failure therapy. In clinical practice, rotary blood pumps used as LVADs are operated at a constant rotational speed and thus do not adapt to the varying demand of the patient. This paper presents a robust control approach for automatic adaptation of the blood pump speed to the blood flow demand of the patient’s body, which enables a defined load sharing between an LVAD and the native ventricle. Robust stability was checked using a detailed model of the human cardiovascular system with uncertainties that describe the most important native physiological control loops as well as a range of pathologies. The robust assistance controller was tested in an in vivo setup and was able to stabilize the cardiovascular system after myocardial infarction.


Author(s):  
Xiao-chen Yang ◽  
Yan Zhang ◽  
Xing-min Gui ◽  
Sheng-shou Hu

The heart failure patients supported by the mechanical rotary blood pumps have been validated and investigated in recent decades. A series of adult blood pumps have been investigated in our research group in the last several years and one of them is currently under clinical trials. This present paper aimed at analyzing a micro pediatric blood pump (MPBP) with Computational fluid dynamics (CFD) tool. MPBP is developed to assist the ventricular according to the practice of pediatric heart failure in Fuwai Hospital of Chinese Academy of Medical Sciences. The blade tip diameter of the MPBP is 10 mm. Some advanced structures proposed in our adult blood pumps were further improved in the MPBP and a cantilevered stator applied in the blood pump is a novel try. The results of the numerical simulation show that the MPBP can generate the flow rates of 0.74–3.21 lpm at the rotational speeds of 9,000–11,000 rpm, producing the pressure rises of 36.9–89.7 mmHg. The structural advantage, hydraulic performance and hemolytic property of the MPBP were analyzed in detail. Overall, the attempt of the cantilevered stator blade improved the performance of the blood pump effectively and the MPBP deserves a promising prospect.


Author(s):  
Mohsen A. Bakouri ◽  
Robert F. Salamonsen ◽  
Andrey V. Savkin ◽  
Einly Lim ◽  
Abdul-Hakeem H. Alomari ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 46
Author(s):  
Maciej Gawlikowski ◽  
Przemysław Kurtyka ◽  
Jerzy Zalewski ◽  
Magda Zarwańska-Doffek ◽  
Artur Kapis

In order to avoid blood clotting, in the second generation of rotary blood pumps the impeller is suspended without mechanical bearing, using balance of magnetic and hydrodynamic forces. Reaching single tens of microns gap between pump housing and impeller is crucial for level of blood traumatization by the pump. In this paper we would like to present the method of physical measurement of this gap on a running pump with the use of commercial fiber-optic proximity sensor on the example of Polish rotary blood pump ReligaHeart ROT. We also discussed technical requirements of the construction of laboratory stand. Full Text: PDF ReferencesS. Westaby, "Rotary blood pumps as definitive treatment for severe heart failure", Future Cardiol. 9, 2 (2013). CrossRef R. Delgado, M. Bergheim, "HeartMate® II left ventricular assist device: a new device for advanced heart failure", Epert Rev. Med. Devices, 2, 5 (2005). CrossRef M. Ozban, T. Yagdi, C. Engin et al, Transplant proc., 44, 6 (2012). CrossRef A.T. Lanfear, M. Hamandi, J. Fan et al., "Trends in HeartMate 3: What we know so far", J. Card. Surg., 35, 1 (2020). CrossRef Ch. Zengsheng, S. Anqiang, W. Hongyu, "Non-physiological shear stress-induced blood damage in ventricular assist device", Medicine in Novel Technology and Devices, 3 (2019). CrossRef A. M. Robertson, A. Sequeira, R. G. Owens, Rheological models of blood In: L. Formaggia, A. Quarteroni, A Veneziani (eds) Cardiovascular Mathematics (Milano, Springer-Verlag 2009) CrossRef M. Gawlikowski et al., "Necessity of telemonitoring in patients treated by means of cardiac assist systems on the example of Polish rotary blood pump ReligaHeart ROT", Advances in Intelligent Systems and Computing, 925 (2019). CrossRef R. Kustosz, et al., "The tin coating utilisation as blood contact surface modification in implantable rotary left ventricle assist device religaheart ROT", Arch. Matall. Mater., 60, 3 (2015). CrossRef S. S. Patil, A. D. Shaligram, "Analytical study of performance variations of fiber optic micro-displacement sensor configurations using mathematical modeling and an experimental test jig", IJSER, 4, 11 (2013). DirectLink Philtec Application Note, 6, 25 (2017) CrossRef


2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
J Müller ◽  
M Brodde ◽  
P Nüsser ◽  
J Müller ◽  
K Graichen ◽  
...  

ASAIO Journal ◽  
1997 ◽  
Vol 43 (2) ◽  
pp. 58 ◽  
Author(s):  
Vinay Jammu ◽  
Stanley Malanoski ◽  
Thomas Walter ◽  
William Smith

Perfusion ◽  
1995 ◽  
Vol 10 (3) ◽  
pp. 153-158 ◽  
Author(s):  
H. Reul ◽  
P. Harbott ◽  
Th Siess ◽  
G. Rau

Sign in / Sign up

Export Citation Format

Share Document