Dilatative Uropathy as a Manifestation of Neurohypophyseal Diabetes Insipidus due to a Novel Mutation in the Arginine Vasopressin-Neurophysin-II Gene

2013 ◽  
Vol 225 (07) ◽  
pp. 407-412 ◽  
Author(s):  
V. Lindenthal ◽  
A. Mainberger ◽  
D. Morris-Rosendahl ◽  
L. Löning ◽  
W. Mayer ◽  
...  
2011 ◽  
Vol 165 (1) ◽  
pp. 161-165 ◽  
Author(s):  
M de Fost ◽  
A S P van Trotsenburg ◽  
H M van Santen ◽  
E Endert ◽  
C van den Elzen ◽  
...  

BackgroundFamilial neurohypophyseal (central) diabetes insipidus (DI) is caused by mutations in the arginine vasopressin–neurophysin II (AVP–NPII) gene. The majority of cases is inherited in an autosomal dominant way. In this study, we present the clinical features of a mother and her son with autosomal dominant neurohypophyseal DI caused by a novel mutation.CaseA thirty-four-year-old woman and her three-year-old son were evaluated because of polyuria and polydipsia since the age of 1.5 years onwards. Both patients were subjected to a water deprivation test confirming the diagnosis of central DI. Magnetic resonance imaging of the brain of the mother showed a hypothalamus without apparent abnormalities and a relatively small neurohypophysis without a hyperintense signal. Mutation analysis showed a c.322G>T (p.?/p.Glu108X) in Exon 2 of the AVP–NPII gene in both mother and son.DiscussionThis study reports neurohypophyseal DI in a mother and her son due to a novel mutation in Exon 2 of the AVP–NPII gene. Clinical and pathophysiological aspects of this disease are shortly reviewed and discussed.


2015 ◽  
Vol 172 (4) ◽  
pp. 461-472 ◽  
Author(s):  
Silverio Perrotta ◽  
Natascia Di Iorgi ◽  
Fulvio Della Ragione ◽  
Saverio Scianguetta ◽  
Adriana Borriello ◽  
...  

ObjectiveIdiopathic early-onset central diabetes insipidus (CDI) might be due to mutations of arginine vasopressin–neurophysin II (AVP–NPII (AVP)) or wolframin (WFS1) genes.Design and methodsSequencing of AVP and WFS1 genes was performed in nine children with CDI, aged between 9 and 68 months, and negative family history for polyuria and polydipsia.ResultsTwo patients carried a mutation in the AVP gene: a heterozygous G-to-T transition at nucleotide position 322 of exon 2 (c.322G>T) resulting in a stop codon at position 108 (p.Glu108X), and a novel deletion from nucleotide 52 to 54 (c.52_54delTCC) producing a deletion of a serine at position 18 (p.Ser18del) of the AVP pre-prohormone signal peptide. A third patient carried two heterozygous mutations in the WFS1 gene localized on different alleles. The first change was A-to-G transition at nucleotide 997 in exon 8 (c.997A>G), resulting in a valine residue at position 333 in place of isoleucine (p.Ile333Val). The second novel mutation was a 3 bp insertion in exon 8, c.2392_2393insACG causing the addition of an aspartate residue at position 797 and the maintenance of the correct open reading frame (p. Asp797_Val798insAsp). While similar WFS1 protein levels were detected in fibroblasts from healthy subjects and from the patient and his parents, a major sensitivity to staurosporine-induced apoptosis was observed in the patient fibroblasts as well as in patients with Wolfram syndrome.ConclusionsEarly-onset CDI is associated with de novo mutations of the AVP gene and with hereditary WFS1 gene changes. These findings have valuable implications for management and genetic counseling.


2004 ◽  
pp. 605-611 ◽  
Author(s):  
S Baglioni ◽  
G Corona ◽  
M Maggi ◽  
M Serio ◽  
A Peri

OBJECTIVE: Most mutations of the arginine vasopressin-neurophysin II (AVP-NPII) gene cause autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI). Such mutations are predicted to alter the three-dimensional structure of the prohormone, which accumulates in the cell body, ultimately leading to neuronal degeneration and hormonal deficit. In this study we describe the case of a 26-year-old female reporting a long-lasting history of polyuria/polydipsia. The father of the patient was affected by diabetes insipidus and was under desmopressin treatment until the time of his death. Nevertheless, the patient had never been subjected to endocrine evaluation. DESIGN AND METHODS: Clinical and genetic studies were performed. An 8-h fluid deprivation test plus desmopressin challenge and a 5% saline solution test were performed, in order to confirm the diagnosis. DNA was extracted from peripheral blood lymphocytes and subjected to direct sequencing of the entire coding region of the AVP-NPII gene. RESULTS AND CONCLUSIONS: Clinical assessment of the patient confirmed the diagnosis of neurohypophyseal diabetes insipidus. Desmopressin treatment was started, which effectively reversed the polyuria/ polydipsia syndrome. Genetic analysis revealed a novel mutation (1665T>A) in exon 2 of the AVP-NPII gene, disrupting one of the disulfide bonds present in the NPII moiety which play a fundamental role in determining the proper folding of the molecule. In summary, in the present study we have described a novel mutation of the AVP-NPII gene, which is consistent with the malfolding/toxicity hypothesis underlying the pathogenesis of adFNDI.


2007 ◽  
Vol 22 (2) ◽  
pp. 118
Author(s):  
Mi Jung Kim ◽  
Byung Wan Lee ◽  
In Kyung Jeong ◽  
Jun Goo Kang ◽  
Seong Jin Lee ◽  
...  

2008 ◽  
Vol 52 (8) ◽  
pp. 1272-1276 ◽  
Author(s):  
Maria Edna de Melo ◽  
Suemi Marui ◽  
Vinícius Nahime de Brito ◽  
Marcio Corrêa Mancini ◽  
Berenice B. Mendonca ◽  
...  

Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is a rare autosomal dominant disorder characterized by polyuria and polydipsia due to deficiency of arginine vasopressin (AVP). More than 50 mutations causing adFNDI have been already reported in the AVP gene. The aim of the present study is to analyze the AVP gene in four generations of one Brazilian kindred with adFNDI. The proband was a 31-year old female with huge hypotonic polyuria (10 L/day) dated from childhood. Molecular analysis included amplification of all exons and exon-intron regions of the AVP gene by PCR and direct sequencing. Sequencing analysis showed a novel point mutation in heterozygous: G88V (GGC>GTC). All affected patients presented the same mutation also in heterozygous, while it was absent in four normal members. We expand the repertoire of mutations in AVP describing the novel G88V mutation in one Brazilian kindred with adFNDI.


2020 ◽  
Vol 52 (11) ◽  
pp. 796-802
Author(s):  
Lara L.I. Feldkamp ◽  
Elke Kaminsky ◽  
Tina Kienitz ◽  
Marcus Quinkler

AbstractFamilial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant hereditary disorder characterized by severe polydipsia and polyuria that usually presents in early childhood. In this study, we describe a new arginine vasopressin (AVP) gene mutation in an ethnic German family with FNDI and provide an overview of disease-associated AVP-gene mutations that are already described in literature. Three members of a German family with neurohypophyseal diabetes insipidus were studied. Isolated DNA from peripheral blood samples was used for mutation analysis by sequencing the whole coding region of AVP-NPII gene. Furthermore, we searched the electronic databases MEDLINE (Pubmed) as well as HGMD, LOVD-ClinVar, db-SNP and genomAD in order to compare our cases to that of other patients with FNDI. Genetic analysis of the patients revealed a novel heterozygote missense mutation in exon 2 of the AVP gene (c.274T>G), which has not yet been described in literature. We identified reports of more than 90 disease-associated mutations in the AVP gene in literature. The novel mutation of the AVP gene seems to cause FNDI in the presented German family. Similar to our newly detected mutation, most mutations causing FNDI are found in exon 2 of the AVP gene coding for neurophysin II. Clinically, it is important to think of FNDI in young children presenting with polydipsia and polyuria.


Sign in / Sign up

Export Citation Format

Share Document