Central Diabetes Insipidus Caused by Arginine Vasopressin Gene Mutation: Report of a Novel Mutation and Review of Literature

2020 ◽  
Vol 52 (11) ◽  
pp. 796-802
Author(s):  
Lara L.I. Feldkamp ◽  
Elke Kaminsky ◽  
Tina Kienitz ◽  
Marcus Quinkler

AbstractFamilial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant hereditary disorder characterized by severe polydipsia and polyuria that usually presents in early childhood. In this study, we describe a new arginine vasopressin (AVP) gene mutation in an ethnic German family with FNDI and provide an overview of disease-associated AVP-gene mutations that are already described in literature. Three members of a German family with neurohypophyseal diabetes insipidus were studied. Isolated DNA from peripheral blood samples was used for mutation analysis by sequencing the whole coding region of AVP-NPII gene. Furthermore, we searched the electronic databases MEDLINE (Pubmed) as well as HGMD, LOVD-ClinVar, db-SNP and genomAD in order to compare our cases to that of other patients with FNDI. Genetic analysis of the patients revealed a novel heterozygote missense mutation in exon 2 of the AVP gene (c.274T>G), which has not yet been described in literature. We identified reports of more than 90 disease-associated mutations in the AVP gene in literature. The novel mutation of the AVP gene seems to cause FNDI in the presented German family. Similar to our newly detected mutation, most mutations causing FNDI are found in exon 2 of the AVP gene coding for neurophysin II. Clinically, it is important to think of FNDI in young children presenting with polydipsia and polyuria.

2004 ◽  
pp. 605-611 ◽  
Author(s):  
S Baglioni ◽  
G Corona ◽  
M Maggi ◽  
M Serio ◽  
A Peri

OBJECTIVE: Most mutations of the arginine vasopressin-neurophysin II (AVP-NPII) gene cause autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI). Such mutations are predicted to alter the three-dimensional structure of the prohormone, which accumulates in the cell body, ultimately leading to neuronal degeneration and hormonal deficit. In this study we describe the case of a 26-year-old female reporting a long-lasting history of polyuria/polydipsia. The father of the patient was affected by diabetes insipidus and was under desmopressin treatment until the time of his death. Nevertheless, the patient had never been subjected to endocrine evaluation. DESIGN AND METHODS: Clinical and genetic studies were performed. An 8-h fluid deprivation test plus desmopressin challenge and a 5% saline solution test were performed, in order to confirm the diagnosis. DNA was extracted from peripheral blood lymphocytes and subjected to direct sequencing of the entire coding region of the AVP-NPII gene. RESULTS AND CONCLUSIONS: Clinical assessment of the patient confirmed the diagnosis of neurohypophyseal diabetes insipidus. Desmopressin treatment was started, which effectively reversed the polyuria/ polydipsia syndrome. Genetic analysis revealed a novel mutation (1665T>A) in exon 2 of the AVP-NPII gene, disrupting one of the disulfide bonds present in the NPII moiety which play a fundamental role in determining the proper folding of the molecule. In summary, in the present study we have described a novel mutation of the AVP-NPII gene, which is consistent with the malfolding/toxicity hypothesis underlying the pathogenesis of adFNDI.


2008 ◽  
Vol 52 (8) ◽  
pp. 1272-1276 ◽  
Author(s):  
Maria Edna de Melo ◽  
Suemi Marui ◽  
Vinícius Nahime de Brito ◽  
Marcio Corrêa Mancini ◽  
Berenice B. Mendonca ◽  
...  

Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is a rare autosomal dominant disorder characterized by polyuria and polydipsia due to deficiency of arginine vasopressin (AVP). More than 50 mutations causing adFNDI have been already reported in the AVP gene. The aim of the present study is to analyze the AVP gene in four generations of one Brazilian kindred with adFNDI. The proband was a 31-year old female with huge hypotonic polyuria (10 L/day) dated from childhood. Molecular analysis included amplification of all exons and exon-intron regions of the AVP gene by PCR and direct sequencing. Sequencing analysis showed a novel point mutation in heterozygous: G88V (GGC>GTC). All affected patients presented the same mutation also in heterozygous, while it was absent in four normal members. We expand the repertoire of mutations in AVP describing the novel G88V mutation in one Brazilian kindred with adFNDI.


2011 ◽  
Vol 165 (1) ◽  
pp. 161-165 ◽  
Author(s):  
M de Fost ◽  
A S P van Trotsenburg ◽  
H M van Santen ◽  
E Endert ◽  
C van den Elzen ◽  
...  

BackgroundFamilial neurohypophyseal (central) diabetes insipidus (DI) is caused by mutations in the arginine vasopressin–neurophysin II (AVP–NPII) gene. The majority of cases is inherited in an autosomal dominant way. In this study, we present the clinical features of a mother and her son with autosomal dominant neurohypophyseal DI caused by a novel mutation.CaseA thirty-four-year-old woman and her three-year-old son were evaluated because of polyuria and polydipsia since the age of 1.5 years onwards. Both patients were subjected to a water deprivation test confirming the diagnosis of central DI. Magnetic resonance imaging of the brain of the mother showed a hypothalamus without apparent abnormalities and a relatively small neurohypophysis without a hyperintense signal. Mutation analysis showed a c.322G>T (p.?/p.Glu108X) in Exon 2 of the AVP–NPII gene in both mother and son.DiscussionThis study reports neurohypophyseal DI in a mother and her son due to a novel mutation in Exon 2 of the AVP–NPII gene. Clinical and pathophysiological aspects of this disease are shortly reviewed and discussed.


2015 ◽  
Vol 172 (4) ◽  
pp. 461-472 ◽  
Author(s):  
Silverio Perrotta ◽  
Natascia Di Iorgi ◽  
Fulvio Della Ragione ◽  
Saverio Scianguetta ◽  
Adriana Borriello ◽  
...  

ObjectiveIdiopathic early-onset central diabetes insipidus (CDI) might be due to mutations of arginine vasopressin–neurophysin II (AVP–NPII (AVP)) or wolframin (WFS1) genes.Design and methodsSequencing of AVP and WFS1 genes was performed in nine children with CDI, aged between 9 and 68 months, and negative family history for polyuria and polydipsia.ResultsTwo patients carried a mutation in the AVP gene: a heterozygous G-to-T transition at nucleotide position 322 of exon 2 (c.322G>T) resulting in a stop codon at position 108 (p.Glu108X), and a novel deletion from nucleotide 52 to 54 (c.52_54delTCC) producing a deletion of a serine at position 18 (p.Ser18del) of the AVP pre-prohormone signal peptide. A third patient carried two heterozygous mutations in the WFS1 gene localized on different alleles. The first change was A-to-G transition at nucleotide 997 in exon 8 (c.997A>G), resulting in a valine residue at position 333 in place of isoleucine (p.Ile333Val). The second novel mutation was a 3 bp insertion in exon 8, c.2392_2393insACG causing the addition of an aspartate residue at position 797 and the maintenance of the correct open reading frame (p. Asp797_Val798insAsp). While similar WFS1 protein levels were detected in fibroblasts from healthy subjects and from the patient and his parents, a major sensitivity to staurosporine-induced apoptosis was observed in the patient fibroblasts as well as in patients with Wolfram syndrome.ConclusionsEarly-onset CDI is associated with de novo mutations of the AVP gene and with hereditary WFS1 gene changes. These findings have valuable implications for management and genetic counseling.


2011 ◽  
Vol 164 (5) ◽  
pp. 705-713 ◽  
Author(s):  
Daniela Vivenza ◽  
Michela Godi ◽  
Maria Felicia Faienza ◽  
Simona Mellone ◽  
Stefania Moia ◽  
...  

ObjectiveMutations in HESX1 represent a rare cause of GH deficiency (GHD) associated with a broad spectrum of other anomalies. We searched for causative mutations in a cohort of 244 Italian patients affected by combined and isolated GHD (IGHD).MethodsThe HESX1 gene-coding region and exon–intron boundaries were screened by denaturing HPLC scanning.ResultsA novel mutation adjacent to the invariant donor splice site of intron 2 (c.357+3G>A) was identified at the heterozygous state in an IGHD patient. The in vitro and in vivo mRNA analysis of the wild-type HESX1 allele revealed the presence of the whole cDNA and two isoforms lacking exon 2 and exons 2–3 respectively. The mutant HESX1 allele yielded only two splicing products, the whole cDNA and the cDNA missing exons 2–3, whereas the mRNA lacking exon 2 was absent. An in vitro assay demonstrated that the exon 2-deleted mRNA, predicting a prematurely truncated protein, is subjected to nonsense-mediated mRNA decay (NMD).ConclusionsThe c.357+3G>A mutation prevents the generation of one of the alternative isoforms normally produced by the wild-type allele, predicting a truncated HESX1 protein. The mutation is likely to cause IGHD in the heterozygous patient by interfering with the downregulation of HESX1 expression mediated by alternative splicing and NMD.Our results open new insight into the mechanism of HESX1 regulation suggesting that the coupling of alternative splicing and NMD might play a fundamental role in directing the HESX1 expression, and that the alteration of this process might lead to severe consequences.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lixia Wang ◽  
Weihong Guo ◽  
Chunyun Fang ◽  
Wenli Feng ◽  
Yumeng Huang ◽  
...  

AbstractX-linked nephrogenic diabetes insipidus (X-linked NDI) is a rare inherited disease mainly caused by lost-of-function mutations in human AVPR2 gene encoding arginine vasopressin receptor 2 (V2R). Our focus of the current study is on exploration of the functional and biochemical properties of Ile324Met (I324M) mutation identified in a pedigree showing as typical recessive X-linked NDI. We demonstrated that I324M mutation interfered with the conformation of complex glycosylation of V2R. Moreover, almost all of the I324M-V2R failed to express on the cell surface due to being captured by the endoplasmic reticulum control system. We further examined the signaling activity of DDAVP-medicated cAMP and ERK1/2 pathways and the results revealed that the mutant receptor lost the ability in response to DDAVP stimulation contributed to the failure of accumulation of cAMP and phosphorylated ERK1/2. Based on the characteristics of molecular defects of I324M mutant, we selected two reagents (SR49059 and alvespimycin) to determine whether the functions of I324M-V2R can be restored and we found that both compounds can significantly “rescue” I324M mutation. Our findings may provide further insights for understanding the pathogenic mechanism of AVPR2 gene mutations and may offer some implications on development of promising treatments for patients with X-linked NDI.


2017 ◽  
Vol 07 (01) ◽  
pp. e1-e3
Author(s):  
Abdulsalam Abu-Libdeh ◽  
Isaiah Wexler ◽  
Imad Dweikat ◽  
David Zangen ◽  
Bassam Abu-Libdeh

AbstractNephrogenic diabetes insipidus (NDI) is a urinary concentrating defect resulting from resistance of the collecting duct to the antidiuretic action of vasopressin (AVP). The X-linked recessive form is the most frequent genetic cause of inherited NDI and can be caused by mutations in the gene encoding the V2 vasopressin receptor (AVPR2). A Palestinian male infant presented in the neonatal period with failure to thrive, vomiting, irritability, fever, and polyuria, and had biochemical findings consistent with NDI. The diagnosis of NDI was established based on the clinical picture, absent response to desmopressin, and a similarly affected elder brother. Sequencing of the AVPR2 gene for the patient and his affected brother revealed a novel missense mutation with replacement of G by A in codon 82 located in exon 2 (TGC → TAC), causing a cysteine to tyrosine substitution (C82Y). Testing of the mother showed that she was the carrier of that mutation. This is the identified AVPR2 mutation in a Palestinian family. Knowledge of these mutations will allow genetic counseling and early diagnosis of affected males.


2013 ◽  
Vol 225 (07) ◽  
pp. 407-412 ◽  
Author(s):  
V. Lindenthal ◽  
A. Mainberger ◽  
D. Morris-Rosendahl ◽  
L. Löning ◽  
W. Mayer ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Chenxiang Cao ◽  
Xueyao Han ◽  
Yumin Ma ◽  
Victor Joseph Bernet ◽  
Jianzhong Xiao

Abstract Background: Maturity onset diabetes in young 3 (MODY 3) is caused by mutation of the hepatic nuclear factor 1 alpha (HNF-1A) gene. Craniofacial macrosomia (CFM) is associated with an abnormal development of craniofacial structures during the embryonic period. Maternal diabetes and genetic predisposition have been associated with CFM1. There are rare reports about an association of MODY 3 and CFM. Clinical case: An 11-year-old male patient presented with right side CFM (mild mandibular hypoplasia, internal auditory canal absence, severe pinna hypoplasia, abnormal orbital size and location, O3.M0.E3.N0.S02) noted at 8 months of age. Preoperative examination revealed A1c at 10.9%. After short term intensive insulin therapy, he had standard bread meal test: fasting glucose 8.11 mmol/L, insulin 13.9 mIU/L (3-25), C-peptide 1.25 ng/ml (0.81-3.85); 1 hour glucose 10.05 mmol/L, insulin 27 mIU/L, C-peptide 2.42 ng/ml; 2 hour glucose 8.17 mmol/L, insulin 16.09 mIU/L, C-peptide 2.11 ng/ml. GADA, IAA and ICA were negative. The mother was diagnosed diabetes at age 27years, when the patient was 8-month-old, and received insulin therapy. The mother was blind by age 35years due to diabetic retinopathy and died of DKA at 38-years-old. The patient’s 16-year-old brother had left side CFM (O2.M1.E2.N0.S0) and his OGTT was normal. The father was diagnosed with impaired glucose tolerance. The family had whole genome sequencing by Sanger technique, and resequenced the mutation with side primers. The CGA to CAA mutation was present at the 686 loci of exon 3 of HNF1A gene in the patient and mother. The HNF1A exon 3 mutation of CGA to CAA resulted in the change of arginine to glutamine which by the HGMA database is recognized as a reported MODY3 gene mutation. There was a mutation of G to A in the 4 loci of exon 1 of the insulin coding region in chromosome 11 in both the patient and elder brother. Neither elder brother nor father had the CGA mutation of HNF1A. Conclusion: There has not been a previous report of a relationship between HNF1A and CFM. In this case, the elder brother had CFM without a HNF1A mutation which does not support a connection between CFM and HNF1A. The two brothers both had CFM and insulin coding gene mutations which would represent a new association not previously described. Further testing is needed to confirm a relationship between the two. Reference: 1. Chen Q, Zhao Y, Shen G, Dai J. Etiology and Pathogenesis of Hemifacial Microsomia. J Dent Res 2018; 97(12): 1297-305. 2. Gougoutas AJ, Singh DJ, Low DW, Bartlett SP. Hemifacial microsomia: clinical features and pictographic representations of the OMENS classification system. Plast Reconstr Surg 2007; 120(7): 112e-20e.


Sign in / Sign up

Export Citation Format

Share Document