avp gene
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 0)

Endocrine ◽  
2021 ◽  
Author(s):  
Carlotta Marzocchi ◽  
Silvia Cantara ◽  
Alfonso Sagnella ◽  
Maria Grazia Castagna ◽  
Marco Capezzone

Abstract Purpose Familial neurohypophysial diabetes insipidus (FNDI), commonly caused by autosomal dominant arginine vasopressin (AVP) mutations, is a rare condition in which vasopressin fails in regulating body’s level of water with final polyuria and polydipsia. Genetic testing in familial cases of FNDI should be carry out to ensure adequate treatments and avoid disease manifestations especially in infants. Methods In this study, we investigated three-generations of a large Italian family with clinical diagnosis of familial central diabetes insipidus for the presence of potential pathogenic mutations in the AVP gene. Results We identified a heterozygous missense mutation (c.154 T > A; p.C52S) in AVP gene in all affected members studied of a large Italian family. In silico tools were used to investigate the pathogenic role of the mutation and three-dimensional protein structure predicted that the p.C52S impairs disulfide bridges formation resulting in misfolding of the protein. Conclusions This is the first study that identified a novel missense p.C52S mutation as causative of central diabetes insipidus in a large Italian pedigree.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dong Hee Kim ◽  
Kwang Kon Kim ◽  
Tae Hwan Lee ◽  
Hyejin Eom ◽  
Jin Woo Kim ◽  
...  

The hypothalamic neuroendocrine system is strongly implicated in body energy homeostasis. In particular, the degree of production and release of arginine vasopressin (AVP) in the hypothalamus is affected by plasma osmolality, and that hypothalamic AVP is responsible for thirst and osmolality-dependent water and metabolic balance. However, the osmolality-responsive intracellular mechanism within AVP cells that regulates AVP synthesis is not clearly understood. Here, we report a role for tonicity-responsive enhancer binding protein (TonEBP), a transcription factor sensitive to cellular tonicity, in regulating osmosensitive hypothalamic AVP gene transcription. Our immunohistochemical work shows that hypothalamic AVP cellular activity, as recognized by c-fos, was enhanced in parallel with an elevation in TonEBP expression within AVP cells following water deprivation. Interestingly, our in vitro investigations found a synchronized pattern of TonEBP and AVP gene expression in response to osmotic stress. Those results indicate a positive correlation between hypothalamic TonEBP and AVP production during dehydration. Promoter and chromatin immunoprecipitation assays confirmed that TonEBP can bind directly to conserved binding motifs in the 5’-flanking promoter regions of the AVP gene. Furthermore, dehydration- and TonEBP-mediated hypothalamic AVP gene activation was reduced in TonEBP haploinsufficiency mice, compared with wild TonEBP homozygote animals. Therefore, our result support the idea that TonEBP is directly necessary, at least in part, for the elevation of AVP transcription in dehydration conditions. Additionally, dehydration-induced reductions in body weight were rescued in TonEBP haploinsufficiency mice. Altogether, our results demonstrate an intracellular machinery within hypothalamic AVP cells that is responsible for dehydration-induced AVP synthesis.


Endocrines ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 37-43
Author(s):  
Vera Tocci ◽  
Maria Mirabelli ◽  
Stefania Giuliano ◽  
Eusebio Chiefari ◽  
Jane Hagelskjær Knudsen ◽  
...  

The autosomal dominant familial form of neurohypophyseal diabetes insipidus (adFNDI) is a rare inherited endocrine disorder characterized by hypotonic polyuria, severe thirst and polydipsia, which results from a deficient neurosecretion of the antidiuretic hormone, also known as arginine vasopressin (AVP). To date, adFNDI has been linked to more than 70 different heterozygous point mutations of the 2.5 kb AVP gene, encoding the composite precursor protein of AVP. A minority of disease-causing mutations, such as the common c.55G>A variant, are predicted to affect amino acid residues close to the signal peptide (SP) cleavage site, and result in abnormal post-translational processing and intracellular trafficking of AVP precursors exerting neurotoxic activity on vasopressinergic magnocellular neurons. Generally, SP variants cause a gradual decline in the neurohypophyseal secretion of AVP in small children, although a wide variability in clinical onset and severity of manifestations has been reported. For the first time, we describe a kindred from Calabria (Southern Italy) with adFNDI and document a partial clinical phenotype in one female young adult member of the family. Methods: A young adult woman was subjected to clinical, neuroradiological and genetic assessments for a mild, adolescent-onset, polyuric state at our Endocrinology Unit. Her family medical history revealed an early-onset (<12 years of age) occurrence of polyuria and polydipsia, which was successfully managed with high doses of oral desmopressin, and a typical adFNDI inheritance pattern that was seen over three generations. Results: In the index patient, the extensive hypertonic dehydration during fluid deprivation test elicited a prompt elevation of urine osmolality and diuresis contraction, indicative of a partial adFNDI phenotype. Diagnosis was confirmed by concordant hormonal tests and magnetic resonance imaging (MRI) evidence of a reduced hyperintense signal of the neurohypophysis, which was regarded as compatible with the depletion of the vasopressinergic magnocellular neurons. Direct DNA sequencing and restriction enzyme cleavage analysis revealed that a heterozygous c.55G>A transition, predicting a p.Ala19Thr replacement in the C-terminal region of SP, was the cause of adFNDI in the investigated kindred. Conclusions: The identification of the genetic cause of aFNDI in this Calabrian kindred provides further information and confirms the wide variability of disease onset and severity of manifestations related to SP variants of the AVP gene, supporting the need for genetic testing in all patients with familial occurrence of polyuria, regardless of their clinical and radiological phenotype. Even though sexual differences in the antidiuretic responses are documented, it is unclear whether female gender would attenuate clinical disease progression in the presence of a pathogenic c.55G>A mutation.


2020 ◽  
Vol 52 (11) ◽  
pp. 796-802
Author(s):  
Lara L.I. Feldkamp ◽  
Elke Kaminsky ◽  
Tina Kienitz ◽  
Marcus Quinkler

AbstractFamilial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant hereditary disorder characterized by severe polydipsia and polyuria that usually presents in early childhood. In this study, we describe a new arginine vasopressin (AVP) gene mutation in an ethnic German family with FNDI and provide an overview of disease-associated AVP-gene mutations that are already described in literature. Three members of a German family with neurohypophyseal diabetes insipidus were studied. Isolated DNA from peripheral blood samples was used for mutation analysis by sequencing the whole coding region of AVP-NPII gene. Furthermore, we searched the electronic databases MEDLINE (Pubmed) as well as HGMD, LOVD-ClinVar, db-SNP and genomAD in order to compare our cases to that of other patients with FNDI. Genetic analysis of the patients revealed a novel heterozygote missense mutation in exon 2 of the AVP gene (c.274T>G), which has not yet been described in literature. We identified reports of more than 90 disease-associated mutations in the AVP gene in literature. The novel mutation of the AVP gene seems to cause FNDI in the presented German family. Similar to our newly detected mutation, most mutations causing FNDI are found in exon 2 of the AVP gene coding for neurophysin II. Clinically, it is important to think of FNDI in young children presenting with polydipsia and polyuria.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Pablo Ramirez, Biochemist ◽  
Elisa Vaiani ◽  
Roxana Marcela Marino, Biochemist ◽  
Natalia Isabel Perez-Garrido, Biochemist ◽  
Cintia Morales ◽  
...  

Abstract Central diabetes insipidus (CDI) is a disorder of water balance characterized by polyuria and polydipsia owing to partial or complete deficiency of the antidiuretic hormone, arginine vasopressin (AVP). Although non-hereditary causes are the most frequent, Familial CDI forms, due to heterozygous mutations in the AVP gene, have also long been recognized. Inheritance occurs mostly in an autosomal dominant manner with almost complete penetrance. The AVP gene encodes for a 164 aminoacids preprotein: the AVP preprohormone which consists of a signal peptide, AVP hormone (9 amino acidpeptide), Neurophysin II (AVP carrier), and a glycoprotein, Copeptin. The AVP preprohormone, is produced in the hypothalamus sand is targeted to the endoplasmic reticulum (ER) by the signal peptide. After cleavage and processing, the AVP hormone is packaged within protein carrier NPII and are transported by axonal trafficking to the neurohypophysis where they can be stored and secreted. Structural changes in NPII have been associated with intracellular accumulation of mutant AVP precursors that have been postulated to be cytotoxic and decreased cell viability of vasopressin-producing neuronsin the neurohypophysis. In this study we describe two index cases from two families of four-generation kindred suspected to have Familial neurohypophyseal diabetes insipidus (FNDI), with absent or barely visibleposterior pituitary by MRI. A water deprivation test was performed in both cases, resulting confirmatory for DI in case 1 while it was inconclusive in case 2. In both cases, molecular studies revealed a pathogenic variant in heterozygous state in the NPII region of the AVP gene, in case 1 we found a previously reported and well characterized variant p.Cys116Gly, cysteine at codon 116 is involved in disulfide bridge important for the secondary structure of NPII. While in case 2 we found a novel variant, p.Gly45Val, in which all in silico tools predict deletereous, whereas there are a previously reported patogenic variant at the same amino acid residueand in 3D modeling it can be observed that structural and conformational changes occur in binding bridge of NPII. We are reporting two novel non related familial CDI cases, even though lack of functional studies, the clinical phenotype in each pedigree suggest this diagnosis, and support the genetic counseling.


2020 ◽  
Author(s):  
Keyword(s):  

2018 ◽  
Vol 315 (4) ◽  
pp. F1129-F1138 ◽  
Author(s):  
Roel Bijkerk ◽  
Christiane Trimpert ◽  
Coen van Solingen ◽  
Ruben G. de Bruin ◽  
Barend W. Florijn ◽  
...  

Fine-tuning of the body’s water balance is regulated by vasopressin (AVP), which induces the expression and apical membrane insertion of aquaporin-2 water channels and subsequent water reabsorption in the kidney. Here we demonstrate that silencing of microRNA-132 (miR-132) in mice causes severe weight loss due to acute diuresis coinciding with increased plasma osmolality, reduced renal total and plasma membrane expression of aquaporin-2, and abrogated increase in AVP levels. Infusion with synthetic AVP fully reversed the antagomir-132-induced diuresis, and low-dose intracerebroventricular administration of antagomir-132 similarly caused acute diuresis. Central and intracerebroventricular antagomir-132 injection both decreased hypothalamic AVP mRNA levels. At the molecular level, antagomir-132 increased the in vivo and in vitro mRNA expression of methyl-CpG-binding protein-2 (MECP2), which is a miR-132 target and which blocks AVP gene expression by binding its enhancer region. In line with this, treatment of hypothalamic N6 cells with a high-salt solution increased its miR-132 levels, whereas it attenuated endogenous Mecp2 mRNA levels. In conclusion, we identified miR-132 as a first miRNA regulating the osmotic balance by regulating the hypothalamic AVP gene mRNA expression.


2018 ◽  
Vol 107 (2) ◽  
pp. 167-180
Author(s):  
Helene Kvistgaard ◽  
Jane H. Christensen ◽  
Jan-Ove Johansson ◽  
Niels Gregersen ◽  
Charlotte Siggaard Rittig ◽  
...  

Objective: Autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) is characterized by severe polyuria and polydipsia and is caused by variations in the gene encoding the AVP prohormone. This study aimed to ascertain a correct diagnosis, to identify the underlying genetic cause of adFNDI in a Swedish family, and to test the hypothesis that the identified synonymous exonic variant in the AVP gene (c.324G>A) causes missplicing and endoplasmic reticulum (ER) retention of the prohormone. Design/Patients: Three affected family members were admitted for fluid deprivation test and dDAVP (1-deamino-8-d-arginine-vasopressin) challenge test. Direct sequencing of the AVP gene was performed in the affected subjects, and genotyping of the identified variant was performed in family members. The variant was examined by expression of AVP minigenes containing the entire coding regions as well as intron 2 of AVP. Methods/Results: Clinical tests revealed significant phenotypical variation with both complete and partial adFNDI phenotype. DNA analysis revealed a synonymous c.324G>A substitution in one allele of the AVP gene in affected family members only. Cellular studies revealed both normally spliced and misspliced pre-mRNA in cells transfected with the AVP c.324G>A minigene. Confocal laser scanning microscopy showed collective localization of the variant prohormone to ER and vesicular structures at the tip of cellular processes. Conclusion: We identified a synonymous variant affecting the second nucleotide of exon 3 in the AVP gene (c.324G>A) in a family in which adFNDI segregates. Notably, we showed that this variant causes partial missplicing of pre-mRNA, resulting in accumulation of the variant prohormone in ER. Our study suggests that even a small amount of aberrant mRNA might be sufficient to disturb cellular function, resulting in adFNDI.


2017 ◽  
Vol 106 (2) ◽  
pp. 167-186 ◽  
Author(s):  
Lise Bols Toustrup ◽  
Helene Kvistgaard ◽  
Johan Palmfeldt ◽  
Charlotte Kjær Bjerre ◽  
Niels Gregersen ◽  
...  

Background/Aim: Variability in the severity and age at onset of autosomal dominant familial neurohypophyseal diabetes insipidus (adFNDI) may be associated with certain types of variants in the arginine vasopressin (AVP) gene. In this study, we aimed to describe a large family with an apparent predominant female occurrence of polyuria and polydipsia and to determine the underlying cause. Methods: The family members reported their family demography and symptoms. Two subjects were diagnosed by fluid deprivation and dDAVP challenge tests. Eight subjects were tested genetically. The identified variant along with 3 previously identified variants in the AVP gene were investigated by heterologous expression in a human neuronal cell line (SH-SY5Y). Results: Both subjects investigated clinically had a partial neurohypophyseal diabetes insipidus phenotype. A g.276_278delTCC variant in the AVP gene causing a Ser18del deletion in the signal peptide (SP) of the AVP preprohormone was perfectly co-segregating with the disease. When expressed in SH-SY5Y cells, the Ser18del variant along with 3 other SP variants (g.227G>A, Ser17Phe, and Ala19Thr) resulted in reduced AVP mRNA, impaired AVP secretion, and partial AVP prohormone degradation and retention in the endoplasmic reticulum. Impaired SP cleavage was demonstrated directly in cells expressing the Ser18del, g.227G>A, and Ala19Thr variants, using state-of-the-art mass spectrometry. Conclusion: Variants affecting the SP of the AVP preprohormone cause adFNDI with variable phenotypes by a mechanism that may involve impaired SP cleavage combined with effects at the mRNA, protein, and cellular level.


Sign in / Sign up

Export Citation Format

Share Document