Expression of myelin auto-antigens and myelin altered peptide ligands in the liver in EAE mice models

2014 ◽  
Vol 52 (01) ◽  
Author(s):  
W Dammermann ◽  
K van der Maaden ◽  
S Lüth
2003 ◽  
Vol 198 (1) ◽  
pp. 99-109 ◽  
Author(s):  
Dong-Gyun Lim ◽  
Jacqueline M. Slavik ◽  
Katarzyna Bourcier ◽  
Kathrine J. Smith ◽  
David A. Hafler

T cell receptors recognize small changes in peptide ligands leading to different T cell responses. Here, we analyzed a panel of HLA-A2–Tax11-19 reactive T cell clones to examine how small allelic variations of MHC molecules could alter the functional outcome of antigen recognition. Similar to the effects induced by antigenic altered peptide ligands, weak or partial agonistic T cell functions were identified in individual T cell clones with the recognition of MHC-altered peptide ligands (MAPLs). Interestingly, one subtype of HLA-A2 molecules induced an unusual type of partial agonistic function; proliferation without cytotoxicity. Modeling of crystallographic data indicated that polymorphic amino acids in the HLA-A2 peptide binding groove, especially the D-pocket, were responsible for this partial agonism. Reciprocal mutations of the Tax peptide side chain engaging the D-pocket indeed restored the agonist functions of the MHC–peptide complex. Whereas early intracellular signaling events were not efficiently induced by these MAPLs, phosphorylated c-Jun slowly accumulated with sustained long-term expression. These data indicate that MAPLs can induce atypical partial agonistic T cell function through structural and biochemical mechanisms similar to altered peptide ligands.


2009 ◽  
Vol 19 (4) ◽  
pp. 366-371 ◽  
Author(s):  
Ei Wakamatsu ◽  
Isao Matsumoto ◽  
Yohei Yoshiga ◽  
Taichi Hayashi ◽  
Daisuke Goto ◽  
...  

Parasitology ◽  
1997 ◽  
Vol 115 (7) ◽  
pp. 55-66 ◽  
Author(s):  
M. PLEBANSKI ◽  
E. A. M. LEE ◽  
A. V. S. HILL

T cells are central to immunity in malaria. CD4+ helper T cells favour the generation of high-affinity antibodies that are effective against blood stages and they are necessary to establish immunological memory. The intrahepatic stage of infection can be eliminated by specific CD8+ cytotoxic T cells (CTL). Cytokines secreted by CD4+ T cells may also contribute to liver stage immunity. Evolution has selected varied mechanisms in pathogens to avoid recognition by T cells. T cells recognize foreign epitopes as complexes with host major histocompatibility (MHC) molecules. Thus, a simple form of evasion is to mutate amino acid residues which allow binding to an MHC allele. Recently, more sophisticated forms of polymorphic evasion have been described. In altered peptide ligand (APL) antagonism, the concurrent presentation of particular closely related epitope variants can prevent memory T cell effector functions such as cytotoxicity, lymphokine production and proliferation. In immune interference, the effect of the concurrent presentation of such related epitope variants can go a step further and prevent the induction of memory T cells from naive precursors. The analysis of immune responses to a protein of P. falciparum, the circumsporozoite protein (CSP), indicates that the malaria parasite may utilize these evasion strategies.


Sign in / Sign up

Export Citation Format

Share Document