Characteristic expression pattern of hypoxia inducible factor 2 alpha mutation-related paragangliomas

2015 ◽  
Vol 122 (03) ◽  
Author(s):  
S Fliedner ◽  
U Shankavaram ◽  
A Elkahloun ◽  
H Lehnert ◽  
K Pacak
2019 ◽  
Vol 63 (11-12) ◽  
pp. 623-629
Author(s):  
Shohreh Asghari-Givehchi ◽  
Mohammad Hossein-Modarressi

Several clinical studies suggest that testis-specific gene antigen 10 (TSGA10) is a cancer-testis antigen with a discernible expression pattern in the testis. Recent studies have highlighted that TSGA10 overexpression in HeLa cells impairs the transcriptional activity of hypoxia-inducible factor alpha (HIF-1α) and inhibits angiogenesis. In this study, we used the zebrafish as a powerful model organism to identify and characterize the orthologue of TSGA10. We analyzed the gene expression pattern by RT-PCR and whole mount in situ hybridization and overexpressed the tsga10 protein by mRNA microinjection. Our results revealed that during early development, tsga10 expression is enriched, but gradually subsides between 0 and 72 hours post fertilization (hpf). There was no detectable transcript at the larval stages. In adult fish, we found high expression levels of tsga10 in the testis and unfertilized egg and low levels of gene expression in the brain, eyes and muscle. Overexpression of tsga10, using tsga10 mRNA microinjection into one-cell stage embryos, resulted in angiogenic and morphological defects at 24 and 48 hpf. This study clarified the expression pattern of tsga10 in different developmental stages and adult tissues, suggesting that tsga10 may have a related biological role in different cell types and tissues. Our results indicate that tsga10 mRNA at embryonic stages is maternally deposited, indicating a transient functional role during embryogenesis. Our findings suggest that tsga10 is a human orthologous gene relevant for future studies to elucidate its mechanism of action in angiogenesis.


2007 ◽  
Vol 43 ◽  
pp. 105-120 ◽  
Author(s):  
Michael L. Paffett ◽  
Benjimen R. Walker

Several molecular and cellular adaptive mechanisms to hypoxia exist within the vasculature. Many of these processes involve oxygen sensing which is transduced into mediators of vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation. A variety of oxygen-responsive pathways, such as HIF (hypoxia-inducible factor)-1 and HOs (haem oxygenases), contribute to the overall adaptive process during hypoxia and are currently an area of intense research. Generation of ROS (reactive oxygen species) may also differentially regulate vascular tone in these circulations. Potential candidates underlying the divergent responses between the systemic and pulmonary circulations may include Nox (NADPH oxidase)-derived ROS and mitochondrial-derived ROS. In addition to alterations in ROS production governing vascular tone in the hypoxic setting, other vascular adaptations are likely to be involved. HPV (hypoxic pulmonary vasoconstriction) and CH (chronic hypoxia)-induced alterations in cellular proliferation, ionic conductances and changes in the contractile apparatus sensitivity to calcium, all occur as adaptive processes within the vasculature.


2013 ◽  
Vol 83 (3) ◽  
pp. 188-197 ◽  
Author(s):  
Rebecca L. Sweet ◽  
Jason A. Zastre

It is well established that thiamine deficiency results in an excess of metabolic intermediates such as lactate and pyruvate, which is likely due to insufficient levels of cofactor for the function of thiamine-dependent enzymes. When in excess, both pyruvate and lactate can increase the stabilization of the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, resulting in the trans-activation of HIF-1α regulated genes independent of low oxygen, termed pseudo-hypoxia. Therefore, the resulting dysfunction in cellular metabolism and accumulation of pyruvate and lactate during thiamine deficiency may facilitate a pseudo-hypoxic state. In order to investigate the possibility of a transcriptional relationship between hypoxia and thiamine deficiency, we measured alterations in metabolic intermediates, HIF-1α stabilization, and gene expression. We found an increase in intracellular pyruvate and extracellular lactate levels after thiamine deficiency exposure to the neuroblastoma cell line SK-N-BE. Similar to cells exposed to hypoxia, there was a corresponding increase in HIF-1α stabilization and activation of target gene expression during thiamine deficiency, including glucose transporter-1 (GLUT1), vascular endothelial growth factor (VEGF), and aldolase A. Both hypoxia and thiamine deficiency exposure resulted in an increase in the expression of the thiamine transporter SLC19A3. These results indicate thiamine deficiency induces HIF-1α-mediated gene expression similar to that observed in hypoxic stress, and may provide evidence for a central transcriptional response associated with the clinical manifestations of thiamine deficiency.


Sign in / Sign up

Export Citation Format

Share Document