Optical Coherence Tomography Opens a New Era in the Afferent Visual System Evaluation

2015 ◽  
Vol 46 (02) ◽  
pp. 078-079
Author(s):  
Veit Sturm
2019 ◽  
Vol 39 (06) ◽  
pp. 711-717 ◽  
Author(s):  
Jennifer S. Graves

AbstractOptical coherence tomography (OCT) grew out of a convergence of rapid advancements in femtoseconds optics research and fiber optic commercial technology. The basic concept of OCT is to “see” into tissues using light echoes, analogous to the sound echoes of ultrasonography. Multiple A-scans are assembled into a B-scan two-dimensional image of the tissue of interest. Retina is an ideal tissue for evaluation by OCT, since the eye is designed to minimize light scattering through the anterior chamber and vitreous. OCT has had a significant impact on the field of multiple sclerosis, where it has allowed direct imaging of the myelin-free segments of axons and cell bodies of retinal ganglion cells. Together with precise functional measurements of the afferent visual system, the addition of robust structural measurements of retinal injury has allowed for an unprecedented ability to correlate clinical effects with the degree of neuronal loss. In addition, OCT has proven helpful to distinguish different forms of demyelinating disease, such as multiple sclerosis (MS) and neuromyelitis optica, and has provided ideal outcome measures in remyelination and neuroprotection trials.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tingwei Zhang ◽  
Aaron M. Kho ◽  
Vivek J. Srinivasan

From the bipolar cells to higher brain visual centers, signals in the vertebrate visual system are transmitted along parallel on and off pathways. These two pathways are spatially segregated along the depth axis of the retina. Yet, to our knowledge, there is no way to directly assess this anatomical stratification in vivo. Here, employing ultrahigh resolution visible light Optical Coherence Tomography (OCT) imaging in humans, we report a stereotyped reflectivity pattern of the inner plexiform layer (IPL) that parallels IPL stratification. We characterize the topography of this reflectivity pattern non-invasively in a cohort of normal, young adult human subjects. This proposed correlate of IPL stratification is accessible through non-invasive ocular imaging in living humans. Topographic variations should be carefully considered when designing studies in development or diseases of the visual system.


2021 ◽  
Author(s):  
Florian Baltă ◽  
Irina Elena Cristescu ◽  
Ioana Teodora Tofolean

Adaptive optics ophthalmoscopy opened a new era in the medical retina field. The possibility of obtaining high-resolution retinal images of photoreceptors and retinal vessels addresses new perspectives in retinal physiology and pathophysiology. The overwhelming incidence of diabetes in the global population justifies the need to develop and refine methods of diagnosing early retinal changes, in order to preserve vision and avoid complications. The current grading of diabetic retinopathy is based on clinical changes only. Nevertheless, imaging tools such as optical coherence tomography and optical coherence tomography angiography are also used for screening of this pathology. The corroboration of the information provided by these imaging methods may lay the foundations for a new approach to the definition and diagnosis of diabetic retinopathy.


Author(s):  
Michael Dietrich ◽  
Christina Hecker ◽  
Alexander Hilla ◽  
Andrés Cruz-Herranz ◽  
Hans-Peter Hartung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document