demyelinating disease
Recently Published Documents





Science ◽  
2022 ◽  
Kjetil Bjornevik ◽  
Marianna Cortese ◽  
Brian C. Healy ◽  
Jens Kuhle ◽  
Michael J. Mina ◽  

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system of unknown etiology. We tested the hypothesis that MS is caused by Epstein-Barr virus (EBV) in a cohort comprising more than 10 million young adults on active duty in the US military, 955 of whom were diagnosed with MS during their period of service. Risk of MS increased 32-fold after infection with EBV but was not increased after infection with other viruses, including the similarly transmitted cytomegalovirus. Serum levels of neurofilament light chain, a biomarker of neuroaxonal degeneration, increased only after EBV seroconversion. These findings cannot be explained by any known risk factor for MS and suggest EBV as the leading cause of MS.

2022 ◽  
Yasuyuki Kihara ◽  
Yunjiao Zhu ◽  
Deepa Jonnalagadda ◽  
William Romanow ◽  
Carter Palmer ◽  

Multiple sclerosis (MS) is an immune-mediated demyelinating disease that alters central nervous system (CNS) functions. Relapsing-remitting MS (RRMS) is the most common form, which can transform into secondary-progressive MS (SPMS) that is associated with progressive neurodegeneration. Single-nucleus RNA sequencing (snRNA-seq) of MS lesions identified disease-related transcriptomic alterations; however, their relationship to non-lesioned MS brain regions has not been reported and which could identify prodromal or other disease susceptibility signatures. Here, snRNA-seq was used to generate high-quality RRMS vs. SPMS datasets of 33,197 nuclei from 8 normal-appearing MS brains, which revealed divergent cell type-specific changes. Notably, SPMS brains downregulated astrocytic sphingosine kinases (SPHK1/2), the enzymes required to phosphorylate and activate the MS drug, fingolimod. This reduction was modeled with astrocyte-specific Sphk1/2 null mice in which fingolimod lost activity, supporting functionality of observed transcriptomic changes. These data provide an initial resource for studies of single cells from non-lesioned RRMS and SPMS brains.

2022 ◽  
Vol 15 ◽  
Hang Shu ◽  
Manqiu Ding ◽  
Pei Shang ◽  
Jia Song ◽  
Yue Lang ◽  

Myelin oligodendrocyte glycoprotein antibody-associated disease is an immune-mediated demyelinating disease of the central nervous system that is present in both adults and children. The most common clinical manifestations are optic neuritis, myelitis, acute disseminated encephalomyelitis, and brainstem syndrome. Cerebral cortical encephalitis (CCE) is a rare clinical phenotype of myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD), which usually begins with seizures, headaches, and fever, and may be misdiagnosed as viral encephalitis in the early stages. Herein, we report two typical MOG antibody (MOG-Ab)-positive patients presenting with CCE, both of whom presented with headache, fever, seizures, and who recovered completely after immunotherapy. In addition, we performed a systematic review of the present literature from the perspectives of population characteristics, clinical symptoms, MRI abnormalities, treatments, and prognosis. Among the patients reported in 25 articles, 33 met our inclusion criteria, with the age of onset ranging from 4 to 52 years. Most of the patients had seizures, headache, fever, and unilateral cortical lesions on brain MRI. For acute CCE, 30 patients were treated with high-dose intravenous methylprednisolone, and the symptoms of most patients were completely relieved after immunotherapy. This study reported our experience and lessons learned in the diagnosis and treatment of MOG-Ab-positive CCE and provides a systematic review of the literature to analyse this rare clinical phenotype.

2022 ◽  
Vol 8 (1) ◽  
pp. 205521732110521
Benan Barakat ◽  
Steve Messina ◽  
Shreya Nayak ◽  
Roman Kassa ◽  
Elia Sechi ◽  

Background Elevated intrathecal immunoglobulin G (IgG; oligoclonal bands (OCBs)) or IgG in people with progressive motor impairment due to “critical” demyelinating lesions are of uncertain significance. Objective Compare clinical/radiological features of people with “critical” demyelinating lesion-induced progressive motor impairment with/without elevated intrathecal IgG synthesis. Methods A total of 133 people with progressive motor impairment attributable to “critical” demyelinating lesions (corticospinal tract location, consistent with the progressive motor deficit) were compared regarding clinical and radiological presentation with and without ≥2 unique cerebrospinal fluid (CSF) OCB and/or IgG index ≥0.85. Results Ninety-eight (74%) had CSF-elevated OCB and/or IgG index, higher with increased magnetic resonance imaging-lesion burden. No differences were found with/without CSF abnormalities in sex (46 of 98 female (47%) vs. 22 of 35 (63%), p = 0.11), onset-age (median 49 vs. 50 years, p = 0.5), progression from onset (62 of 98 (63%) vs. 25 of 35 (71%)), progression post-relapse (36 of 98 (37%) vs. 10 of 35 (29%), p = 0.4), and duration between demyelinating disease onset and CSF examination (30 (0–359) vs. 48 (0–323) months p = 0.7). “Critical” lesions were radiologically similar, most commonly cervical spine located (72 of 98 (74%) vs. 19 of 35 (54%), p = 0.18) both with/without CSF abnormalities. Conclusions People with “critical” demyelinating lesion-induced progressive motor impairment typically have elevated intrathecal IgG (OCB and/or IgG) and similar clinical and radiological presentation regardless of CSF findings, therefore representing valid presentations of progressive demyelinating disease.

2021 ◽  
Vol 7 (12) ◽  
pp. 116093-116103
Gabriele de Carvalho Oliveira ◽  
Vinícius Spencer Escobar ◽  
Rafael Alqam ◽  
Franciele Leal Conceição ◽  
Mirna Wetters Portuguez ◽  

Multiple Sclerosis (MS) is a demyelinating disease, characterized by lesions in the Central Nervous System (CNS) that affects its healthy cells, causing motor and neurological sequelae. This work aims to understand the psychological and emotional aspects of patients inserted into a hospital and diagnosed with MS. Thus, a narrative review of the literature was carried out, investigating the main topics related to the theme, and illustrated through the case report of three patients treated with brief cognitive-behavioral psychotherapy, in a tertiary healthcare center in 2021. The literature indicates that, commonly, 30 to 50% of individuals with the disease present significant cognitive impairment symptoms, such as dysarthria, executive dysfunction, and reduced processing speed, in addition to greater depressive symptoms and dysfunctional beliefs. The most common psychological phenomena in the cases referred to were maladaptive cognitive distortions, such as catastrophizing and negative filtering, as well as saddened affection and psychomotor retardation. Considering the common semiology presented by them, and also taking into consideration the characteristics of the family and the social and environmental context in which they are placed, it is evident that there is an influence of these factors on their belief systems and thoughts, as already predisposed characteristics or originated by the progression of the disease. Cognitive-Behavioral Therapy (CBT) techniques, such as motivational interviewing and psychoeducation, are shown to be effective for the treatment of dysfunctional comorbidities associated with the disease. 

2021 ◽  
Vol 2 (26) ◽  

BACKGROUND Lower-grade insular gliomas often appear as expansile and infiltrative masses on magnetic resonance imaging (MRI). However, there are nonneoplastic lesions of the insula, such as demyelinating disease and vasculopathies, that can mimic insular gliomas. OBSERVATIONS The authors report two patients who presented with headaches and were found to have mass lesions concerning for lower-grade insular glioma based on MRI obtained at initial presentation. However, on the immediate preoperative MRI obtained a few weeks later, both patients had spontaneous and complete resolution of the insular lesions. LESSONS Tumor mimics should always be in the differential diagnosis of brain masses, including those involving the insula. The immediate preoperative MRI (within 24–48 hours of surgery) must be compared carefully with the initial presentation MRI to assess interval change that suggests tumor mimics to avoid unnecessary surgical intervention.

2021 ◽  
Jeffrey R Atkinson ◽  
Andrew D Jerome ◽  
Andrew R Sas ◽  
Ashley Munie ◽  
William David Arnold ◽  

Biological aging is the strongest factor associated with the clinical phenotype of multiple sclerosis (MS). Relapsing remitting MS (RRMS) typically presents in the third or fourth decade, while the mean age of presentation of progressive MS (pMS) is 45 years old. Here we show that experimental autoimmune encephalomyelitis (EAE), induced by the adoptive transfer of encephalitogenic CD4+ Th17 cells, is more severe, and less like to remit, in middle-aged compared with young adult mice. Donor T cells and neutrophils are more abundant, while B cells are relatively sparse, in central nervous system (CNS) infiltrates of the older mice. Experiments with reciprocal bone marrow chimeras demonstrate that radio-resistant, non-hematopoietic cells play a dominant role in shaping age-related features of the neuroinflammatory response, as well as the clinical course, during EAE. Reminiscent of pMS, EAE in middle-aged adoptive transfer recipients is characterized by widespread microglial activation. Microglia from older mice express a distinctive transcriptomic profile, suggestive of enhanced chemokine synthesis and antigen presentation. Collectively, our findings suggest that drugs that suppress microglial activation, and acquisition or expression of aging-associated properties, may be beneficial in the treatment of progressive forms of inflammatory demyelinating disease.

Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Michela Ada Noris Ferilli ◽  
Roberto Paparella ◽  
Ilaria Morandini ◽  
Laura Papetti ◽  
Lorenzo Figà Talamanca ◽  

Neuromyelitis Optica Spectrum Disorder (NMOSD) is a central nervous system (CNS) inflammatory demyelinating disease characterized by recurrent inflammatory events that primarily involve optic nerves and the spinal cord, but also affect other regions of the CNS, including hypothalamus, area postrema and periaqueductal gray matter. The aquaporin-4 antibody (AQP4-IgG) is specific for NMOSD. Recently, myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) have been found in a group of AQP4-IgG negative patients. NMOSD is rare among children and adolescents, but early diagnosis is important to start adequate therapy. In this report, we present cases of seven pediatric patients with NMOSD and we review the clinical and neuroimaging characteristics, diagnosis, and treatment of NMOSD in children.

Elham Gholami ◽  
Mohammad Reza Gholami ◽  
Asadollah Tavakoli ◽  
Mahdie Ahmadi ◽  
Jafar Rezaian ◽  

Demyelination disorder is an unusual pathologic event, which occurs in the central nervous system (CNS). Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects the CNS, and it is the leading cause of disability in young adults. Lysolecithin (LPC) is one of the best toxin-induced demyelination models. In this study, a suitable model is created, and the effect of fluoxetine treatment is examined on this model. In this case, it was assumed that daily fluoxetine treatment had increased the endogenous remyelination in the LPC model. This study was focused on investigating the influence of the fluoxetine dose of 5 or 10 mg/kg per day for 1 and 4 weeks on LPC-induced neurotoxicity in the corpus callosum region. It was performed as a demyelinating model in male Wistar rats. After 3 days, fluoxetine was injected intraperitoneally (5 or 10 mg/kg per day) for 1 and 4 weeks in each group. After completing the treatment course, the corpus callosum was removed to examine the gene expression and histological analysis was performed. The results of the histopathological study of hematoxylin and eosin staining of the corpus callosum showed that in 1 and 4-week treatment groups, fluoxetine has reduced the level of inflammation at the LPC injection site (5 and 10 mg/kg per day). Fluoxetine treatment in the luxol fast blue (LFB) staining of the corpus callosum has been led to an increase in myelination capacity in all doses and times. The results of the genetic study showed that the fluoxetine has significantly reduced the expression level of tumor necrosis factor-α, nuclear factor κβ, and induced nitric oxide synthase in comparison with the untreated LPC group. Also, the fluoxetine treatment has enhanced the expression level of the forkhead box P3 (FOXP3) gene in comparison with the untreated group. Fluoxetine has increased the expression level of myelination and neurotrophic genes such as myelin basic protein (MBP), oligodendrocyte transcription factor 2 (OLIG2), and brain-derived neurotrophic factor (BDNF). The outcomes demonstrated that fluoxetine reduces inflammation and strengthens the endogenous myelination in the LPC-induced demyelination model; however, supplementary studies are required for specifying the details of its mechanisms.

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013245
Ali I. Mirza ◽  
Feng Zhu ◽  
Natalie Knox ◽  
Jessica D. Forbes ◽  
Gary Van Domselaar ◽  

Background and Objectives:Little is known of the functional potential of the gut microbiome in pediatric-onset multiple sclerosis (MS). We performed metagenomic analyses using stool samples from individuals with pediatric-onset MS and unaffected controls.Methods:Persons ≤21 years old enrolled in the Canadian Pediatric Demyelinating Disease Network providing a stool sample were eligible. Twenty MS patients (McDonald criteria) with symptom onset <18 years were matched to 20 controls by sex, age (±3 years), stool consistency, and race. Microbial taxonomy and functional potentials were estimated from stool sample-derived metagenomic reads and compared by disease status (MS vs controls) and disease-modifying drug (DMD) exposure using alpha-diversity, relative abundance, and prevalence using Wilcoxon rank-sum, ALDEx2 and Fisher’s exact tests, respectively.Results:Individuals with MS were aged 13.6 years (mean) at symptom onset and 8 were DMD naïve. Mean ages at stool sample were 16.1 and 15.4 years for MS and control participants, respectively; 80% were girls. Alpha-diversity of enzymes and proteins did not differ by disease or DMD status (p>0.20), but metabolic pathways, gene annotations and microbial taxonomy did. Individuals with MS (vs controls) exhibited higher methanogenesis prevalence (odds ratio=10, p=0.044), and Methanobrevibacter abundance (log2 fold-change[LFC]=1.7, p=0.0014), but lower homolactic fermentation abundance (LFC=-0.48, p=0.039). Differences by DMD status included lower phosphate butyryltransferase for DMD-naïve vs exposed MS patients (LFC=-1.0, p=0.033).Discussion:The gut microbiome’s functional potential and taxonomy differed between individuals with pediatric-onset MS versus controls, including higher prevalence of a methane-producing pathway from Archaea and depletion of the lactate fermentation pathway. DMD exposure was associated with butyrate-producing enzyme enrichment. Together these findings indicate that the gut microbiome of individuals with MS may have a disturbed functional potential.

Sign in / Sign up

Export Citation Format

Share Document