Electron Transfer Reactions in Atom Transfer Radical Polymerization

Synthesis ◽  
2017 ◽  
Vol 49 (15) ◽  
pp. 3311-3322 ◽  
Author(s):  
Marco Fantin ◽  
Francesca Lorandi ◽  
Armando Gennaro ◽  
Abdirisak Isse ◽  
Krzysztof Matyjaszewski

Electrochemistry may seem an outsider to the field of polymer science and controlled radical polymerization. Nevertheless, several electrochemical methods have been used to determine the mechanism of atom transfer radical polymerization (ATRP), using both a thermodynamic and a kinetic approach. Indeed, electron transfer reactions involving the metal catalyst, initiator/dormant species, and propagating radicals play a crucial role in ATRP. In this mini-review, electrochemical properties of ATRP catalysts and initiators are discussed, together with the mechanism of the atom and electron transfer in ATRP.1 Introduction2 Thermodynamic and Electrochemical Properties of ATRP Catalysts3 Thermodynamic and Electrochemical Properties of Alkyl Halides and Alkyl Radicals4 Atom Transfer from an Electrochemical and Thermodynamic Standpoint5 Mechanism of Electron Transfer in ATRP6 Electroanalytical Techniques for the Kinetics of ATRP Activation7 Electrochemically Mediated ATRP8 Conclusions

2016 ◽  
Vol 7 (47) ◽  
pp. 7199-7203 ◽  
Author(s):  
Hui-Chun Lee ◽  
Markus Antonietti ◽  
Bernhard V. K. J. Schmidt

A Cu(ii) MOF can serve as an comprehensive catalyst for activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) in the synthesis of benzyl methacrylate, styrene, isoprene and 4-vinylpyridine.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xin Hu ◽  
Ning Zhu ◽  
Kai Guo

Atom transfer radical polymerization (ATRP) is one of the most robust tools to prepare well-defined polymers with precise topologies and architectures. Although series of improved ATRP methods have been developed to decrease the metal catalyst loading to parts per million, metal residue is the key limiting factor for variety of applications, especially in microelectronic and biomedical area. The feasible solution to this challenge would be the establishment of metal-free ATRP. Since 2014, organocatalyzed ATRP (O-ATRP) or metal free ATRP has achieved significant progress by developing kinds of organic photoredox catalysts. This review highlights the advances in organocatalyzed atom transfer radical polymerization as well as the potential future directions.


Sign in / Sign up

Export Citation Format

Share Document