Cellular Degradation of Free and Inhibitor-bound Tissue-type Plasminogen Activator

2000 ◽  
Vol 83 (02) ◽  
pp. 290-296 ◽  
Author(s):  
Chantal Camani ◽  
Olivier Gavin ◽  
Egbert Kruithof

SummaryThe low density lipoprotein receptor-related protein (LRP) is a multiligand clearance receptor that removes free tissue-type plasminogen activator (t-PA) or complexes of t-PA with plasminogen activator inhibitor type 1 (PAI-1) from the blood circulation or the pericellular space. Co-receptors are essential for LRP-mediated clearance of several ligands (e.g. glycosaminoglycans for thrombin/protease nexin and lipoprotein lipase, and the urokinase receptor for urokinase/PAI-1 complexes). The present study was undertaken to investigate whether LRP-mediated t-PA clearance requires a co-receptor as well.In five cell lines from different organs and species degradation of t-PA and t-PA/PAI-1 was mediated by LRP (or LRP-like receptors). No degradation of t-PA and t-PA/PAI-1 occurred in THP-1 or U-937 human monocyte-like cells, despite the presence of functional LRP. As glycosaminoglycans can bind t-PA and PAI-1 we investigated whether they are involved in t-PA/PAI-1 degradation. Pre-treatment of COS cells or HT1080 cells with chlorate, an inhibitor of glycosaminoglycan sulfation, did not decrease t-PA/PAI-1 degradation. Furthermore, CHO cells genetically deficient in glycosaminoglycans efficiently degraded t-PA/PAI-1. Thus it is unlikely that glycosaminoglycans are co-receptors for degradation of t-PA or t-PA/PAI-1.This study indicates that THP-1 and U-937 cells lack a critical component (co-receptor?) for the LRP-mediated degradation of t-PA. Abbreviations: LRP, low density lipoprotein receptor-related protein; PAI-1, plasminogen activator inhibitor type 1; RAP, receptor-associated protein; t-PA, tissue-type plasminogen activator; u-PA, urokinase; u-PAR, urokinase receptor.

2001 ◽  
Vol 357 (1) ◽  
pp. 289-296 ◽  
Author(s):  
Olav M. ANDERSEN ◽  
Helle H. PETERSEN ◽  
Christian JACOBSEN ◽  
S⊘ren K. MOESTRUP ◽  
Michael ETZERODT ◽  
...  

The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each ≈ 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca2+ cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. α2-macroglobulin (α2M)–proteinase complexes, lipoprotein-containing particles and serine proteinase–inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA–PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3–CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA–PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp958,CR5, Asp999,CR6, Trp953,CR5 and Trp994,CR6), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP)–the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA–PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA–PAI-1 as well as for the binding of RAP.


Author(s):  
Tae Ito ◽  
Yuko Suzuki ◽  
Hideto Sano ◽  
Naoki Honkura ◽  
Francis J Castellino ◽  
...  

Background: Details of the molecular interaction between tissue type plasminogen activator (tPA) and plasminogen activator inhibitor type-1 (PAI-1) remain unknown. Methods and Results: Three distinct forms of high molecular weight complexes are demonstrated. Two of the forms were detected by mass spectrometry. The high molecular mass detected by MALDI-TOF MS spectrometry was 107,029 Da, which corresponds to the sum of molecular masses of the intact tPA (65,320 Da) and the intact PAI-1 (42,416 Da). The lower molecular mass was 104,367 Da and is proposed to lack the C-terminal bait peptide of PAI-1 (calculated mass, 3,804 Da) which was detected as a 3,808 Da fragment. When the complex was analyzed by SDS-PAGE, only a single band was observed. However, after treatment by SDS and Triton X-100, two distinct forms of the complex with different mobilities were shown by SDS-PAGE. The higher molecular weight band demonstrated specific tPA activity on fibrin autography, whereas the lower molecular weight band did not. Peptide sequence analysis of these two bands, however, unexpectedly revealed the existence of the C-terminal cleavage peptide in both bands and its amount was less in the upper band. In the upper band, the sequences corresponding to the regions at the interface between two molecules in its Michaelis intermediate were diminished. Thus, these two bands corresponded to distinct nonacyl-enzyme complexes, wherein only the upper band liberated free tPA under the conditions employed. Conclusion: These data suggest that under physiological conditions a fraction of the tPA-PAI-1 population exists as non-acylated-enzyme inhibitor complex.


2007 ◽  
Vol 53 (3) ◽  
pp. 399-404 ◽  
Author(s):  
Yuditiya Purwosunu ◽  
Akihiko Sekizawa ◽  
Keiko Koide ◽  
Antonio Farina ◽  
Noroyono Wibowo ◽  
...  

Abstract Background: Detection of placental mRNA in maternal plasma has been reported in high-risk pregnancies. We attempted to investigate the concentrations of plasminogen activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (tPA) mRNA in maternal plasma in preeclampsia. Methods: Peripheral blood samples were obtained from healthy pregnant women before and after delivery and also from women with or without preeclampsia. Plasma was isolated from these samples, and RNA was extracted. Plasma PAI-1 and tPA mRNA concentrations were then measured by use of reverse transcription PCR assays. The concentrations were converted into multiples of the median (MoM) of the controls adjusted for gestational age. Data were stratified and analyzed according to the clinical severity of preeclampsia and quantitative distribution of blood pressure and proteinuria. Results: The median (minimum–maximum) PAI-1 mRNA MoM values for women with preeclampsia and controls were 2.48 (0.82–8.53) and 1.00 (0.41–2.33), respectively, whereas the median (minimum–maximum) tPA mRNA MoM values were 3.33 (1.01–10.58) and 1.00 (0.95–1.20), respectively. The concentrations of both PAI-1 and tPA mRNA were significantly increased in cases of preeclampsia, compared with controls (P <0.0001). The MoM values of both mRNA species were directly correlated with the severity of preeclampsia and were greatest among a subgroup of hemolysis, increased liver enzymes, and low platelets pregnancies. Conclusion: Maternal plasma PAI-1 and tPA mRNAs are significantly increased in patients with preeclampsia and are positively correlated with the severity of preeclampsia.


Sign in / Sign up

Export Citation Format

Share Document