Developing a Public Key Infrastructure for a Secure Regional e-Health Environment

2002 ◽  
Vol 41 (05) ◽  
pp. 414-418 ◽  
Author(s):  
I. Mavridis ◽  
C. Ilioudis ◽  
C. Georgiadis ◽  
G. Pangalos

Summary Objectives: Internet technologies provide an attractive infrastructure for efficient and low cost communications in regional health information networks. The advantages provided by the Internet come however with a significantly greater element of risk to the confidentiality and integrity of information. This is because the Internet has been designed primarily to optimize information sharing and interoperability, not security. The main objective of this paper is to propose the exploitation of public-key cryptography techniques to provide adequate security to enable secure healthcare Internet applications. Methods: Public-key cryptography techniques can provide the needed security infrastructure in regional health networks. In the regional health-care security framework presented in this paper, we propose the use of state-of-art Public Key Infrastructure (PKI) technology. Such an e-Health PKI consists of regional certification authorities that are implemented within the central hospitals of each region and provide their services to the rest of the healthcare establishments of the same region. Results: Significant experience in this area has been gained from the implementation of the PKI@AUTH project. Conclusions: The developed PKI infrastructure already successfully provides its security services to the AHEPA university hospital. The same infrastructure is designed to easily support a number of hospitals participating in a regional health information network.

2013 ◽  
pp. 126-147
Author(s):  
Reed H. Petty ◽  
Jiang Bian ◽  
Remzi Seker

Electronic forms of communications are becoming increasingly pervasive. The Internet links not only senders and receivers of e-mail, but also consumers to suppliers, businesses to businesses, citizens to governments, and so forth. The potential for communications to be intercepted, hijacked, emulated, or otherwise manipulated for nefarious purposes is an area of grave concern. The security of message traffic relies heavily upon encryption. Encryption relies upon keys. Public key infrastructure (PKI) addresses keys – how they are used, how they are exchanged, and how they are validated. Furthermore, public key cryptography provides confidentiality, integrity, authentication, and non-repudiation. In general, PKI is a broad subject matter and is constantly evolving to meet the rapid growth in today’s information world. This chapter is intended to reveal the mystery, and perhaps misconceptions, of the PKI as well as offering readers a broad high-level view of the PKI.


Author(s):  
Reed H. Petty ◽  
Jiang Bian ◽  
Remzi Seker

Electronic forms of communications are becoming increasingly pervasive. The Internet links not only senders and receivers of e-mail, but also consumers to suppliers, businesses to businesses, citizens to governments, and so forth. The potential for communications to be intercepted, hijacked, emulated, or otherwise manipulated for nefarious purposes is an area of grave concern. The security of message traffic relies heavily upon encryption. Encryption relies upon keys. Public key infrastructure (PKI) addresses keys – how they are used, how they are exchanged, and how they are validated. Furthermore, public key cryptography provides confidentiality, integrity, authentication, and non-repudiation. In general, PKI is a broad subject matter and is constantly evolving to meet the rapid growth in today’s information world. This chapter is intended to reveal the mystery, and perhaps misconceptions, of the PKI as well as offering readers a broad high-level view of the PKI.


Cryptography ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 14
Author(s):  
Xavier Boyen ◽  
Udyani Herath ◽  
Matthew McKague ◽  
Douglas Stebila

The conventional public key infrastructure (PKI) model, which powers most of the Internet, suffers from an excess of trust into certificate authorities (CAs), compounded by a lack of transparency which makes it vulnerable to hard-to-detect targeted stealth impersonation attacks. Existing approaches to make certificate issuance more transparent, including ones based on blockchains, are still somewhat centralized. We present decentralized PKI transparency (DPKIT): a decentralized client-based approach to enforcing transparency in certificate issuance and revocation while eliminating single points of failure. DPKIT efficiently leverages an existing blockchain to realize an append-only, distributed associative array, which allows anyone (or their browser) to audit and update the history of all publicly issued certificates and revocations for any domain. Our technical contributions include definitions for append-only associative ledgers, a security model for certificate transparency, and a formal analysis of our DPKIT construction with respect to the same. Intended as a client-side browser extension, DPKIT will be effective at fraud detection and prosecution, even under fledgling user adoption, and with better coverage and privacy than federated observatories, such as Google’s or the Electronic Frontier Foundation’s.


2021 ◽  
Vol 5 (6) ◽  
pp. 1161-1170
Author(s):  
Valen Brata Pranaya ◽  
Theophilus Wellem

The validity of the routing advertisements sent by one router to another is essential for Internet connectivity. To perform routing exchanges between Autonomous Systems (AS) on the Internet, a protocol known as the Border Gateway Protocol (BGP) is used. One of the most common attacks on routers running BGP is prefix hijacking. This attack aims to disrupt connections between AS and divert routing to destinations that are not appropriate for crimes, such as fraud and data breach. One of the methods developed to prevent prefix hijacking is the Resource Public Key Infrastructure (RPKI). RPKI is a public key infrastructure (PKI) developed for BGP routing security on the Internet and can be used by routers to validate routing advertisements sent by their BGP peers. RPKI utilizes a digital certificate issued by the Certification Authority (CA) to validate the subnet in a routing advertisement. This study aims to implement BGP and RPKI using the Bird Internet Routing Daemon (BIRD). Simulation and implementation are carried out using the GNS3 simulator and a server that acts as the RPKI validator. Experiments were conducted using 4 AS, 7 routers, 1 server for BIRD, and 1 server for validators, and there were 26 invalid or unknown subnets advertised by 2 routers in the simulated topology. The experiment results show that the router can successfully validated the routing advertisement received from its BGP peer using RPKI. All invalid and unknown subnets are not forwarded to other routers in the AS where they are located such that route hijacking is prevented.  


2020 ◽  
Vol 89 ◽  
pp. 101658 ◽  
Author(s):  
Joel Höglund ◽  
Samuel Lindemer ◽  
Martin Furuhed ◽  
Shahid Raza

2019 ◽  
Vol 16 (9) ◽  
pp. 3945-3954
Author(s):  
Priya Oberoi ◽  
Sumit Mittal ◽  
Rajneesh Kumar Gujral

Cloud security is one of the major issues which are affecting the acceptance of Cloud computing (CC). In spite of the number of benefits offered by CC, it also suffers from a myriad of security vulnerabilities. Security is the prime concern while we are accessing the resources from the Cloud through the Internet. This research work is primarily on IAAS (Infrastructure as a service). Here a protocol called Authenticated Routing on Cloud Network (ARCN) has been proposed, to secure the communication route between the client and service provider. The proposed protocol ARCN uses the public key cryptography to mitigate the various security attacks like malicious insider attacks, Spoofing, Falsified routes, DoS, etc.


In computer based system, key for the problem of identification, authentication and secrecy can be found in the field of cryptography. Dependence on public key infrastructure and to receive certificates signed by Certificate Authority (CA) to authenticate oneself for exchange of encrypted messages is one of the most significant limitation for the widespread adoption of Public Key Cryptography (PKC) as this process is time engrossing and error prone. Identity based cryptography (IBC) aspires to reduce the certificate and key management overhead of PKC. IBC’s important primordial is Identity-based Encryption (IBE). IBE provided emergent for perception of Identity based signature (IBS) schemes. In this paper, overview of IBE and IBS schemes has been given. Also, a survey on various IBE and IBS schemes has been performed to review different problems related to them. Finally, feasibility and applicability of IBC in current and future environments has been discussed.


Sign in / Sign up

Export Citation Format

Share Document