Effect Of Selective Inhibition Of Platelet Thromboxane On Platelet-Vessel Wall Interaction In Vivo

1981 ◽  
Author(s):  
Y C Chen ◽  
K K Wu ◽  
E R Hall ◽  
D L Venton ◽  
G C Le Breton

It is well recognized that thromboxane A2(TXA2) plays an important role in platelet reactivity. To determine the role of TXA2 in platelet-vessel wall (P-V) interaction, the effect of 1-benzylimidazole (1-BI), a specific inhibitor of thromboxane synthetase, and 13-azaprostanoic acid (APA), a TXA2 antagonist, on platelet thrombus formation was evaluated in vivo in NZW male rabbits using the autologous indium-111 (111In) labeled platelet technique. Rabbits were treated with intravenous 1-BI or APA or vehicles. After injection of autologous 111In-platelets, de-endothelialization of the abdominal aorta was created by a balloon catheter technique. At 3 hrs, blood samples were obtained and the animals were sacrificed. The aortae were removed and the injured and uninjured segments were dissected. Radioactivity counts and dry weight of the tissues and blood were determined. The vascular radioactivity counts were converted to platelet numbers by using a standard linear calibration curve. As small numbers of platelets adhered to normal vessel wall nonspecifically, this number was subtracted to obtain specific platelet accumulation at the injured sites. 1-BI at 10mg/kg reduced the specific platelet accumulation significantly (n=5, 12.3±S.D.I.5×106 pl/gm tissue; p<0.01) when compared with the controls (n=10, 33.0±5.1×106 pl/gm tissue). Platelet accumulation was further reduced by increasing the dosage to 30mg/kg. By contrast, APA injection (10mg/kg) had no significant effect. However, when APA was given by constant infusion at 250μg/kg/min 1 hr prior to injury, the APA-treated animals had an 80% reduction of platelet accumulation relative to controls. These findings indicate that TXA2 plays an important role in P-V interaction and specific inhibition of TXA2 appears to be efficacious in eliminating platelet thrombus formation.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1510-1510
Author(s):  
Christophe Dubois ◽  
Laurence Panicot-Dubois ◽  
Justin F. Gainor ◽  
Barbara C. Furie ◽  
Bruce Furie

Abstract Adhesion to and activation of platelets at an injured vessel wall are critical events in the formation of a thrombus. Calcium mobilization is one marker of platelet activation. Of different agonists capable of activating platelets in vitro, thrombin, collagen and vWF have been described to induce calcium mobilization, leading to the formation of aggregates. Using high speed digital multichannel intravital microscopy, we characterized calcium mobilization during platelet activation and thrombus formation in genetically modified mice. The kinetics of platelet activation and accumulation after laser-induced injury in cremaster muscle arterioles of living mice were analyzed. In wild type mice, platelets adhered and accumulated rapidly at the site of laser-induced injury. Thrombi increased in size, reached a maximum size at 90–120 sec, decreased in size and then stabilized within 3 to 4 min post-injury. In vWF−/− mice, the kinetics of platelet accumulation followed the same pattern as in wild type mice. However, a significant albeit modest reduction in the size of each thrombus was observed in these genetically deficient mice in comparison with wild type mice. By ranking the thrombi by size, we observed that 40% of the thrombi formed in vWF−/− mice were present in the quadrant containing the smallest thrombi versus 18% for the wild type mice. Only 8% of the thrombi formed in vWF−/− mice were distributed in the quadrant containing the largest thrombi versus 32% for the wild type mice. In wild type mice treated with lepirudin, a specific inhibitor of thrombin activity, a small early accumulation of platelets was observed at about 16 sec whereas in untreated wild type mice this early accumulation is often obscured by subsequent thrombin-mediated platelet accumulation and activation. However, at the time of maximal thrombus size in wild-type mice, platelet accumulation in wild type mice was more than ten-fold greater than in wild type mice treated with lepirudin. The kinetics of platelet accumulation were similar in FcRγ−/− mice lacking GPVI, GPVI-depleted mice and wild type mice. Furthermore, depletion of GPVI from the platelet surface of vWF−/− mice or platelets of wild type mice treated with lepirudin did not alter the kinetics of platelet accumulation in those mice. By monitoring calcium mobilization per platelet engaged in the growing thrombus, we observed that elevated calcium levels in each platelet were similar in FcRγ−/−, GPVI depleted, vWF−/− and wild type mice. However in wild type mice treated with lepirudin, platelet calcium mobilization was almost completely inhibited in comparison with those observed in wild type mice. Our results indicate that thrombin is the major agonist leading to platelet activation after laser-induced injury. Collagen, as previously reported (Dubois, Blood.2006;107:3902) does not play a role in platelet thrombus formation after laser injury and, based on data reported here, does not play a role in platelet activation in this model. vWF is important for the growth of the platelet thrombus but is not required for initial platelet accumulation or platelet activation in vivo in this thrombosis model. The platelet agonist or ligand responsible for initial early platelet accumulation after laser-induced injury is unknown, and does not require GPVI, thrombin or vWF.


1967 ◽  
Vol 18 (03/04) ◽  
pp. 592-604 ◽  
Author(s):  
H. R Baumgartner ◽  
J. P Tranzer ◽  
A Studer

SummaryElectron microscopic and histologic examination of rabbit ear vein segments 4 and 30 min after slight endothelial damage have yielded the following findings :1. Platelets do not adhere to damaged endothelial cells.2. If the vessel wall is denuded of the whole endothelial cell, platelets adhere to the intimai basement lamina as do endothelial cells.3. The distance between adherent platelets as well as endothelial cells and intimai basement lamina measures 10 to 20 mµ, whereas the distance between aggregated platelets is 30 to 60 mµ.4. 5-hydroxytryptamine (5-HT) is released from platelets during viscous metamorphosis at least in part as 5-HT organelles.It should be noted that the presence of collagen fibers is not necessary for platelet thrombus formation in vivo.


Author(s):  
C N McCollum ◽  
H C Norcott ◽  
R J Hawker ◽  
M Goldman ◽  
Z Drolc ◽  
...  

Prosthetic arterial grafts often thrombose when used to bypass diseased small arteries due to the deposition of laminated platelet thrombus. The rate of lll-Indium labelled platelet accumulation on autogenous vein, polytetra- fluoroethylene (PTFE, Gore-Tex) and double velour Dacron (Microvel) has been investigated in patients and the influence of aspirin and dipyridamole (ASA/DPM) evaluated.Two days before surgery 40 patients undergoing femoro-popliteal bypass were started randomly and double blind, on either ASA 300 mgm + DPM 75 mgm tds or placebo. One week postoperatively autologous 111-Indium labelled platelets were injected and isotope emissions over the graft and contralateral leg counted for 7 days. Graft thrombogenicity was calculated as the daily rise in the ratio of counts, graft/contralateral thigh.Three placebo and one ASA/DPM prosthetic grafts occluded prior to study. Thrombogenicity (mean ± SEM) was greatest in the Dacron grafts at 0.22 ± 0.03 on placebo (n=7) and 0.16 ± 0.03 on ASA/DPM (n=5) (p < 0.05). The effect of therapy however, was most striking in reducing thrombogenicity of PTFE grafts from 0.17 ± 0.03 (n=4) to 0.06 ± 0.01 (n=7) (p < 0.02). The thrombogenicity of 0.03 ± 0.005 was so low in the 13 vein grafts that the effect of therapy could not be determined.The 111-Indium platelet technique described may be used to quantitate in vivo platelet deposition. In man the combination of ASA/DPM reduced the rate of thrombus formation on prosthetic materials. PTFE grafts with ASA/DPM therapy most nearly approach the low thrombogenicity of vein.


Author(s):  
V Turitto ◽  
H Weiss ◽  
I Sussman ◽  
T Zimmerman

Immunological techniques have demonstrated the presence of factor VIII:AGN in both the endothelium and deeper layers of vessel wall. Since plasma factor VIII:VWF is known to mediate platelet adhesion to subendothelium, we investigated the influence of vessel wall factor VIII on platelet interaction with the vascular surface. Everted vessel segments (14 mm in length) from rabbit aorta, denuded of their endothelial lining by a balloon catheter technique, were incubated for 1 hr at 37°C in 1ml of either 0.2M Tris buffer (B), normal goat serum diluted 1/5 with B or goat serum containing an antibody to rabbit factor VIII:VWF diluted 1/5, 1/20 or 1/100 with B. The segments were exposed in an annular chamber to citrated huipn blood, flowing at 40ml/min (wall shear rate of 2600 sec-1 ) for 5 min. The percentage of subendothelial surface covered with adherent platelets (A) or platelet thrombi greater than 5μm in height (T) were determined morphometrically. Values of A were significantly decreased on vessels treated with serum containing antibody diluted 1/5 (A=30.4±5.9, p<0.0l) or 1/20 (A=31.7±5.0, p<0.0l) but not 1/100 (A=37.7±7.4, p=NS) compared to vessels incubated with either B(A=53.8±5.l) or normal serum (A=58.0±7.9). Thrombus formation (T) was not significantly decreased by treatment of the vessel wall with serum containing antibody. Similar results were obtained when the IgG fractions of serum were used instead of whole serum.Thus, it appears that factor VIII:AGN in the vessel wall may be important in the initial platelet events involved in hemostasis. The relative importance of vessel wall factor VIII versus that present in the plasma requires further study.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4665-4674 ◽  
Author(s):  
Reema Jasuja ◽  
Bruce Furie ◽  
Barbara C. Furie

Protein disulfide isomerase (PDI) catalyzes the oxidation reduction and isomerization of disulfide bonds. We have previously identified an important role for extracellular PDI during thrombus formation in vivo. Here, we show that endothelial cells are a critical cellular source of secreted PDI, important for fibrin generation and platelet accumulation in vivo. Functional PDI is rapidly secreted from human umbilical vein endothelial cells in culture upon activation with thrombin or after laser-induced stimulation. PDI is localized in different cellular compartments in activated and quiescent endothelial cells, and is redistributed to the plasma membrane after cell activation. In vivo studies using intravital microscopy show that PDI appears rapidly after laser-induced vessel wall injury, before the appearance of the platelet thrombus. If platelet thrombus formation is inhibited by the infusion of eptifibatide into the circulation, PDI is detected after vessel wall injury, and fibrin deposition is normal. Treatment of mice with a function blocking anti-PDI antibody completely inhibits fibrin generation in eptifibatide-treated mice. These results indicate that, although both platelets and endothelial cells secrete PDI after laser-induced injury, PDI from endothelial cells is required for fibrin generation in vivo.


1977 ◽  
Author(s):  
R. Wiedemann ◽  
W. Weichert ◽  
K. Breddin

The film presents observations in small mesenteric vessels (diameter 10-20 μm) of the rat using high power Nomarski optics. Under stasis conditions platelets appear as flat discs. Leucocytes are often seen creeping slowly along the intact vessel wall. Vascular lesions are produced with a focused laser beam (Hadron 513 biolaser). Immediately after the lesion platelets stick to the site of the microburn either in their native disc like shape without apparent morphologic changes or with protrusions. Within seconds these platelets swell and form protrusions. After 3-10 min, depending on the size of the lesion the vessel is occluded by a platelet thrombus. Platelets undergo further swelling. Later the thrombus is partially or completely swept away and the vessel is recanal i zed. Irreversible fusion of platelets is rarely observed. . New, usually smaller thrombi form at the damaged vessel wall. The morphologic platelet changes observed differ markedly from the changes observed during aggregation in vitro. After injection of a new antithrombotic substance (Bay G 7565) the adhesion of platelets to the damaged area is remarkably diminished. The few platelets which adhere to the site of injury show the same swelling and transformation like in untreated animals. The film demonstrates that it is possible to investigate morphologic changes of single platelets during thrombus formation. It seems possible to adapt this model for the in vivo study of antithrombotic drugs.


1987 ◽  
Author(s):  
T Fujimori ◽  
T Saeki ◽  
K Harada ◽  
M Sato ◽  
N Ohshima

A new agent developed in our laboratory, 4-cyano-5,5-bis(4-methoxyphenyl)-4-pentenoic acid (E-5510), suppressed various human platelet functions in vitro. The compound also showed quite potent ex vivo anti-platelet effects in many experimentalanimals. It is well known that anti-platelet effects are not always parallel to anti-thrombotic effects. Thus, in order to predict the efficacy of E-5510 in thrombotic disorders, the anti-thrombotic effects were examined in 3 different animal models of thrombosis.(1) Anti-thrombotic effect in an extracorporeal shunt model Two hrs after oral administration of the drug to guinea pigs,an extracorporeal shunt between the right carotid artery and the left jugular vein was performed. The thrombus formation on a silk thread inserted in the shunt tube was quantitated by measuring the time from the onset of circulation to the stenosis of blood flow. E-5510 dose-dependently inhibited thrombus formation, the minimum effective dose being 0.03 mg/kg.(2) Effect on microthrombus formation in mesenteric arteriole In order to evaluate the effect on intravascular platelet thrombus formation, thrombosis was induced in vivo in mesenteric arteriole in guinea pigs with filtered light from a mercury lamp and an intravenous fluorescent dye in an intravital microscope system (M. Sato and N. Ohshima, Thromb. Res.,35, 319, 1984). The thrombus formation was quantitated by measuring the time taken for circulating platelets to begin to adhere to vessel wall and the time taken for blood flow to stop completely due to fully developed thrombus. Both the time required for platelet adhesion to vessel wall and for platelet thrombus formation were significantly prolonged after oral administration of E-5510.(3) Effect on pulmonary thromboembolism Acute pulmonary thromboembolism was induced in mice by a bolus intravenous injection of arachidonic acid, and mortality was determined 3 min later. E-5510 dose-dependently reduced pulmonary thromboembolic mortality, and its ED50 was 0.11 mg/kg. The results described above indicate thatE-5510 may have beneficial effects in clinical treatments of thrombotic disease.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 258-258 ◽  
Author(s):  
Pavan K. Bendapudi ◽  
Karen Deceunynck ◽  
Secil Koseoglu ◽  
Roelof Hendrik Bekendam ◽  
Shauna D Mason ◽  
...  

Abstract To inhibit pathological thrombus formation without impairing hemostasis is the holy grail of anticoagulant therapy. Recent data from animal models have indicated that factor XII (FXII) may be a promising new antithrombotic target that is particularly intriguing due to the longstanding clinical observation that severe congenital FXII deficiency is not associated with a bleeding diathesis in humans. FXII is thought to participate in thrombus formation after being activated in high shear arterial environments. FXIIa then initiates downstream activation of the contact pathway, culminating in thrombin generation. However, the relevant cell surface for FXII activation remains unclear. Here we compare the role of platelets versus endothelial cells in FXII activation and study the function of surface phospholipids in this process. To explore the effect of FXII inhibition on thrombus formation in vivo, we used antibody X210-C01, a novel human IgG1 developed using phage-display technology that blocks both mouse and human FXIIa. Using a mouse laser injury model of arterial thrombosis, we showed that X210-C01 inhibited both fibrin formation and platelet accumulation at sites of vascular injury. Plasma removed from animals after completion of these experiments was used to quantify the concentrations of X210-C01 achieved in vivo at a given dose. FXII inhibition was somewhat more potent in preventing platelet accumulation (IC50 dose = 27 mg/kg, R2=0.93) than fibrin formation (IC50 dose = 43 mg/kg, R2=0.95). Importantly, treatment with X210-C01 at 100 mg/kg did not prolong bleeding times or increase total blood loss in a tail bleeding assay. To evaluate the mechanism underlying our in vivo observations, we studied the differential role of FXII in thrombin generation by stimulated platelets and endothelium. X210-C01 did not globally inhibit SFLLRN-induced platelet aggregation or granule release. We next performed a fluorogenic thrombin generation assay (TGA) using human platelets treated with the peptide agonist SFLLRN. X210-C01 inhibited platelet-based thrombin generation in a dose-dependent fashion, whereas anti-tissue factor (TF) and anti-factor VIIa (FVIIa) antibodies did not. By contrast, in a similar TGA using SFLLRN-stimulated endothelial cells, X210-C01 had no effect, while anti-TF antibodies abrogated thrombin generation. These results indicate that stimulated endothelium generates thrombin by a mechanism distinct from that of platelets. FXII is known to be activated in vitro by anionic surfaces. Because phosphatidylserine (PS) is a negatively-charged phospholipid expressed on the surface of stimulated platelets, we reasoned that PS may serve as the platelet-based activator of FXII. To test this hypothesis, we used lactadherin, a potent and specific inhibitor of PS, in the platelet-based TGA and showed that PS blockade inhibited platelet-based thrombin generation at concentrations as low as 10 nM. We then used a chromogenic FXIIa activity assay to test the ability of PS-containing liposomes to activate FXII. Liposomes containing 80% phosphatidylcholine (PC) and 20% PS (PC-PS 80/20) failed to activate FXII at concentrations as high as 100 µM. In this assay, SFLLRN-stimulated platelets led to significantly greater FXII activation than either resting platelets or the PC-PS 80/20 liposomes tested. In summary, we have made the unexpected finding that thrombin generation on the surface of stimulated platelets proceeds by a FXIIa-dependent pathway and does not require FVIIa or TF. By contrast, thrombin generation on endothelium requires TF but not FXIIa. Additionally, surface PS is necessary but not sufficient for platelet-based FXII activation and thrombin generation, pointing to the involvement of a second platelet component. Further studies will be directed towards investigating the in vivo role of platelet-based FXII activation in arterial thrombus formation. Disclosures Mason: Shire Pharmaceuticals: Employment. Kenniston:Shire Pharmaceuticals: Employment.


1979 ◽  
Vol 42 (02) ◽  
pp. 603-610 ◽  
Author(s):  
J H Adams ◽  
J R A Mitchell

SummaryThe ability of potential anti-thrombotic agents to modify platelet-thrombus formation in injured cerebral arteries in the rabbit was tested. Low doses of heparin were without effect, while higher doses produced variable suppression of white body formation but at the expense of bleeding. Aspirin did not inhibit white body formation but another non-steroid anti-inflammatory agent, flurbiprofen was able to do so, as was the anti-gout agent, sulphinpyrazone. Magnesium salts both topically and parenterally, suppressed thrombus formation and increased the concentration of ADP which was required to initiate thrombus production at minor injury sites.


1999 ◽  
Vol 81 (01) ◽  
pp. 157-160 ◽  
Author(s):  
Ross Bentley ◽  
Suzanne Morgan ◽  
Karen Brown ◽  
Valeria Chu ◽  
Richard Ewing ◽  
...  

SummaryThe in vivo antithrombotic activity of RPR120844, a novel synthetic coagulation factor Xa (fXa) inhibitor (Ki = 7 nM), was assessed by its ability to inhibit thrombus formation in a damaged segment of the rabbit jugular vein. Intravenous dose-response studies were performed and thrombus mass (TM), activated partial thromboplastin time (APTT), prothrombin time (PT), inhibition of ex vivo fXa activity and plasma drug levels (PDL) were determined. TM, measured at the end of a 50 min infusion, was significantly reduced (p <0.05 vs saline-treated animals) by RPR120844 at 30 and 100 μg/kg/min. At doses of 10, 30 and 100 μg/kg/min, APTT was prolonged by 2.1, 4.2 and 6.1-fold, and PT was prolonged by 1.4, 2.2 and 3.5-fold, respectively. PDL were determined by measuring anti-fXa activity using an amidolytic assay. Peak PDL were 0.8 ± 0.3, 1.5 ± 0.9 and 2.4 ± 0.6 μM, respectively. The drug effect was reversible with APTT, PT and PDL returning toward pretreatment values 30 min after termination of treatment. The results suggest that RPR120844, or similar compounds, may provide an efficacious, yet easily reversible, means of inhibiting thrombus formation.


Sign in / Sign up

Export Citation Format

Share Document