scholarly journals Chromosomal Microarray Analysis in Children with Unexplained Developmental Delay/Intellectual Disability

2018 ◽  
Vol 08 (01) ◽  
pp. 001-009
Author(s):  
Pinar Arican ◽  
Berk Ozyilmaz ◽  
Dilek Cavusoglu ◽  
Pinar Gencpinar ◽  
Kadri Erdogan ◽  
...  

AbstractChromosomal microarray (CMA) analysis for discovery of copy number variants (CNVs) is now recommended as a first-line diagnostic tool in patients with unexplained developmental delay/intellectual disability (DD/ID) and autism spectrum disorders. In this study, we present the results of CMA analysis in patients with DD/ID. Of 210 patients, pathogenic CNVs were detected in 26 (12%) and variants of uncertain clinical significance in 36 (17%) children. The diagnosis of well-recognized genetic syndromes was achieved in 12 patients. CMA analysis revealed pathogenic de novo CNVs, such as 11p13 duplication with new clinical features. Our results support the utility of CMA as a routine diagnostic test for unexplained DD/ID.

Author(s):  
George Kirov ◽  
Michael C. O’Donovan ◽  
Michael J. Owen

Several submicroscopic genomic deletions and duplications known as copy number variants (CNVs) have been reported to increase susceptibility to schizophrenia. Those for which the evidence is particularly strong include deletions at chromosomal segments 1q21.1, 3q29, 15q11.2, 15q13.3, 17q12 and 22q11.2, duplications at 15q11.2-q13.1, 16p13.1, and 16p11.2, and deletions atthe gene NRXN1. The effect of each on individual risk is relatively large, but it does not appear that any of them is alone sufficient to cause disorder in carriers. These CNVs often arise as new mutations(de novo). Analyses of genes enriched among schizophrenia implicated CNVs highlight the involvement in the disorder of post-synaptic processes relevant to glutamatergicsignalling, cognition and learning. CNVs that contribute to schizophrenia risk also contribute to other neurodevelopmental disorders, including intellectual disability, developmental delay and autism. As a result of selection, all known pathogenic CNVs are rare, and none makes a sizeable contribution to overall population risk of schizophrenia, although the study of these mutations is nevertheless providing important insights into the origins of the disorder.


2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Liu ◽  
Yuqiang Lv ◽  
Mehdi Zarrei ◽  
Rui Dong ◽  
Xiaomeng Yang ◽  
...  

AbstractCopy number variants (CNVs) are recognized as a crucial genetic cause of neurodevelopmental disorders (NDDs). Chromosomal microarray analysis (CMA), the first-tier diagnostic test for individuals with NDDs, has been utilized to detect CNVs in clinical practice, but most reports are still from populations of European ancestry. To contribute more worldwide clinical genomics data, we investigated the genetic etiology of 410 Han Chinese patients with NDDs (151 with autism and 259 with unexplained intellectual disability (ID) and developmental delay (DD)) using CMA (Affymetrix) after G-banding karyotyping. Among all the NDD patients, 109 (26.6%) carried clinically relevant CNVs or uniparental disomies (UPDs), and 8 (2.0%) had aneuploidies (6 with trisomy 21 syndrome, 1 with 47,XXY, 1 with 47,XYY). In total, we found 129 clinically relevant CNVs and UPDs, including 32 CNVs in 30 ASD patients, and 92 CNVs and 5 UPDs in 79 ID/DD cases. When excluding the eight patients with aneuploidies, the diagnostic yield of pathogenic and likely pathogenic CNVs and UPDs was 20.9% for all NDDs (84/402), 3.3% in ASD (5/151), and 31.5% in ID/DD (79/251). When aneuploidies were included, the diagnostic yield increased to 22.4% for all NDDs (92/410), and 33.6% for ID/DD (87/259). We identified a de novo CNV in 14.9% (60/402) of subjects with NDDs. Interestingly, a higher diagnostic yield was observed in females (31.3%, 40/128) compared to males (16.1%, 44/274) for all NDDs (P = 4.8 × 10−4), suggesting that a female protective mechanism exists for deleterious CNVs and UPDs.


2015 ◽  
Vol 2 ◽  
pp. 2333794X1562371 ◽  
Author(s):  
John Peabody ◽  
Lisa DeMaria ◽  
Diana Tamandong-LaChica ◽  
Jhiedon Florentino ◽  
Maria Czarina Acelajado ◽  
...  

To explore the routine and effective use of genetic testing for patients with intellectual disability and developmental delay (ID/DD), we conducted a prospective, randomized observational study of 231 general pediatricians (40%) and specialists (60%), using simulated patients with 9 rare pediatric genetic illnesses. Participants cared for 3 randomly assigned simulated patients, and care responses were scored against explicit evidence-based criteria. Scores were calculated as a percentage of criteria completed. Care varied widely, with a median overall score of 44.7% and interquartile range of 36.6% to 53.7%. Diagnostic accuracy was low: 27.4% of physicians identified the correct primary diagnosis. Physicians ordered chromosomal microarray analysis in 55.7% of cases. Specific gene sequence testing was used in 1.4% to 30.3% of cases. This study demonstrates that genetic testing is underutilized, even for widely available tests. Further efforts to educate physicians on the clinical utility of genetic testing may improve diagnosis and care in these patients.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Xu ◽  
Linda Crane Mitchell ◽  
Alice R. Richman ◽  
Kaitlyn Clawson

Background. Chromosomal Microarray Analysis (CMA) is increasingly utilized to detect copy number variants among children and families affected with autism spectrum disorders (ASD). However, CMA is controversial due to possible ambiguous test findings, uncertain clinical implications, and other social and legal issues related to the test.Methods. Participants were parents of children with ASD residing in the North Eastern region of North Carolina, USA. We conducted individual, face-to-face interviews with 45 parents and inquired about their perceptions of CMA.Results. Three major themes dominated parents’ perceptions of CMA. None of the parents had ever heard of the test before and the majority of the parents postulated positive attitudes toward the test. Parents’ motivations in undergoing the test were attributed to finding a potential cause of ASD, to being better prepared for having another affected child, and to helping with future reproductive decisions. Perceived barriers included the cost of testing, risk/pain of CMA testing, and fear of test results.Conclusion. This study contributes to the understanding of psychosocial aspects and cultural influences towards adoption of genetic testing for ASD in clinical practice. Genetic education can aid informed decision-making related to CMA genetic testing among parents of children with ASD.


2021 ◽  
Vol 9 ◽  
Author(s):  
Eun Hye Yang ◽  
Yong Beom Shin ◽  
Soo Han Choi ◽  
Hye Won Yoo ◽  
Hye Young Kim ◽  
...  

Background and Objectives: Chromosomal microarray (CMA) is a first-tier genetic test for children with developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), and multiple congenital anomalies (MCA). In this study, we report our experiences with the use of CMA in Korean children with unexplained DD/ID.Methods: We performed CMA in a cohort of 308 children with DD/ID between January 2010 and September 2020. We also retrospectively reviewed their medical records. The Affymetrix CytoScan 750 K array with an average resolution of 100 kb was used to perform CMA.Results: Comorbid neurodevelopmental disorders were ASD (37 patients; 12.0%), epilepsy (34 patients; 11.0%), and attention deficit hyperactivity disorders (12 patients; 3.9%). The diagnostic yield was 18.5%. Among the 221 copy number variants (CNVs) identified, 70 CNVs (57 patients; 18.5%) were pathogenic. Deletion CNVs were more common among pathogenic CNVs (PCNVs) than in non-PCNVs (P < 0.001). The size difference between PCNVs and non-PCNVs was not significant (P = 0.023). The number of included genes within CNV intervals was significantly higher in PCNVs (average 8.6; 0–347) than in non-PCNVs (average 47.5; 1–386) (P < 0.001). Short stature and hearing difficulty were also more common in the PCNV group than in the non-PCNV group (P = 0.010 and 0.070, respectively).Conclusion: This study provides additional evidence for the usefulness of CMA in genetic testing of children with DD/ID in Korea. The pathogenicity of CNVs correlated with the number of included genes within the CNV interval and deletion type of the CNVs, but not with CNV size.


Author(s):  
Evan Jiang ◽  
Mark P. Fitzgerald ◽  
Katherine L. Helbig ◽  
Ethan M. Goldberg

AbstractInterleukin-1 receptor accessory protein-like 1 (IL1RAPL1) encodes a protein that is highly expressed in neurons and has been shown to regulate neurite outgrowth as well as synapse formation and synaptic transmission. Clinically, mutations in or deletions of IL1RAPL1 have been associated with a spectrum of neurological dysfunction including autism spectrum disorder and nonsyndromic X-linked developmental delay/intellectual disability of varying severity. Nearly all reported cases are in males; in the few reported cases involving females, the clinical presentation was mild or the deletion was identified in phenotypically normal carriers in accordance with X-linked inheritance. Using genome-wide microarray analysis, we identified a novel de novo 373 kb interstitial deletion of the X chromosome (Xp21.1-p21.2) that includes exons 4 to 6 of the IL1RAPL1 gene in an 8-year-old girl with severe intellectual disability and behavioral disorder with a history of developmental regression. Overnight continuous video electroencephalography revealed electrical status epilepticus in sleep (ESES). This case expands the clinical genetic spectrum of IL1RAPL1-related neurodevelopmental disorders and highlights a new genetic association of ESES.


2020 ◽  
Vol 7 (1) ◽  
pp. e539
Author(s):  
Daniel G. Calame ◽  
Meagan Hainlen ◽  
Danielle Takacs ◽  
Leah Ferrante ◽  
Kayla Pence ◽  
...  

ObjectiveTo demonstrate that de novo missense single nucleotide variants (SNVs) in EIF2AK2 cause a neurodevelopmental disorder with leukoencephalopathy resembling Pelizaeus-Merzbacher disease (PMD).MethodsA retrospective chart review was performed of 2 unrelated males evaluated at a single institution with de novo EIF2AK2 SNVs identified by clinical exome sequencing (ES). Clinical and radiographic data were reviewed and summarized.ResultsBoth individuals presented in the first year of life with concern for seizures and developmental delay. Common clinical findings included horizontal and/or pendular nystagmus during infancy, axial hypotonia, appendicular hypertonia, spasticity, and episodic neurologic regression with febrile viral illnesses. MRI of the brain demonstrated severely delayed myelination in infancy. A hypomyelinating pattern was confirmed on serial imaging at age 4 years for proband 1. In proband 2, repeat imaging at age 13 months confirmed persistent delayed myelination. These clinical and radiographic features led to a strong suspicion of PMD. However, neither PLP1 copy number variants nor pathogenic SNVs were detected by chromosomal microarray and trio ES, respectively. Reanalysis of trio ES identified heterozygous de novo EIF2AK2 missense variant c.290C>T (p.Ser97Phe) in proband 1 and c.326C>T (p.Ala109Val) in proband 2.ConclusionsThe autosomal dominant EIF2AK2-related leukoencephalopathy, developmental delay, and episodic neurologic regression syndrome should be considered in the differential diagnosis for PMD and other hypomyelinating leukodystrophies (HLDs). A characteristic history of developmental regression with febrile illnesses may help distinguish it from other HLDs.


Sign in / Sign up

Export Citation Format

Share Document