scholarly journals Studies on Ristocetin Induced Platelet Aggregation

1977 ◽  
Author(s):  
R.L. Nachman ◽  
E.A. Jaffe ◽  
B.B. Weksler

Human platelets washed and fixed in paraformaldehyde aggregate in the presence of the antibiotic ristocetin and normal plasma. This aggregation response is abolished after digestion of the fixed platelets with chymotrypsin. Antisera to fixed washed platelets were produced in rabbits and absorbed with chymotrypsin-treated, fixed washed platelets. Monovalent Fab fragments obtained from the isolated γ-globulin fractions of the antisera blocked ristocetin-induced aggregation of fixed washed platelets in buffer and normal platelets in platelet-rich plasma. By double-antibody immunoprecipitation, it was shown that the antibody which blocked the ristocetin reaction interacted with a platelet membrane surface protein of mol.wt.155,000. Partially purified preparations of membrane glycoprotein I obtained from wheat germ affinity columns block the ristocetin reaction. The results suggest that the glycoprotein I complex on the surface of the human platelet mediates ristocetin-induced von Willebrand factor-dependent platelet aggregation.

Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 625-628 ◽  
Author(s):  
DM Peterson ◽  
NA Stathopoulos ◽  
TD Giorgio ◽  
JD Hellums ◽  
JL Moake

Different types of platelets in various types of plasma were subjected to levels of shear stress that produce irreversible platelet aggregation in normal platelet-rich plasma (PRP). At shear stresses of 90 or 180 dyne/cm2 applied for 30 seconds or five minutes, aggregation was either absent or only transient and reversible using severe von Willebrand's disease (vWD) PRP (less than 1% von Willebrand factor, vWF); Bernard-Soulier syndrome (BSS) PRP (platelets deficient in the membrane glycoprotein Ib, GPIb); normal PRP plus monoclonal antibody (MoAb) to GPIb; thrombasthenic PRP (platelets deficient in membrane glycoprotein IIb-IIIa complex, GPIIb-IIIa); and normal PRP plus MoAb to GPIIb-IIIa. Shear-induced aggregation was inhibited under the above conditions, even though the platelets were activated to release their granular contents. Sheared normal platelets in vWD plasma aggregated in response to added vWF. These studies demonstrate that the formation of stable platelet aggregates under conditions of high shear requires vWF and the availability of both GPIb and GPIIb-IIIa on platelet membranes. The experiments demonstrate that vWF-platelet interactions can occur in the absence of artificial agonists or chemical modification of vWF. They suggest a possible mechanism for platelet aggregation in stenosed or partially obstructed arterial vessels in which the platelets are subjected to relatively high levels of shear stress.


Blood ◽  
1987 ◽  
Vol 69 (2) ◽  
pp. 625-628 ◽  
Author(s):  
DM Peterson ◽  
NA Stathopoulos ◽  
TD Giorgio ◽  
JD Hellums ◽  
JL Moake

Abstract Different types of platelets in various types of plasma were subjected to levels of shear stress that produce irreversible platelet aggregation in normal platelet-rich plasma (PRP). At shear stresses of 90 or 180 dyne/cm2 applied for 30 seconds or five minutes, aggregation was either absent or only transient and reversible using severe von Willebrand's disease (vWD) PRP (less than 1% von Willebrand factor, vWF); Bernard-Soulier syndrome (BSS) PRP (platelets deficient in the membrane glycoprotein Ib, GPIb); normal PRP plus monoclonal antibody (MoAb) to GPIb; thrombasthenic PRP (platelets deficient in membrane glycoprotein IIb-IIIa complex, GPIIb-IIIa); and normal PRP plus MoAb to GPIIb-IIIa. Shear-induced aggregation was inhibited under the above conditions, even though the platelets were activated to release their granular contents. Sheared normal platelets in vWD plasma aggregated in response to added vWF. These studies demonstrate that the formation of stable platelet aggregates under conditions of high shear requires vWF and the availability of both GPIb and GPIIb-IIIa on platelet membranes. The experiments demonstrate that vWF-platelet interactions can occur in the absence of artificial agonists or chemical modification of vWF. They suggest a possible mechanism for platelet aggregation in stenosed or partially obstructed arterial vessels in which the platelets are subjected to relatively high levels of shear stress.


1995 ◽  
Vol 308 (3) ◽  
pp. 947-953 ◽  
Author(s):  
T Kawasaki ◽  
Y Taniuchi ◽  
N Hisamichi ◽  
Y Fujimura ◽  
M Suzuki ◽  
...  

A new platelet antagonist, tokaracetin, was isolated from the venom of Trimeresurus tokarensis by ion-exchange chromatography, heparin-Sepharose chromatography and hydrophobic HPLC. The purified protein showed an apparent molecular mass on SDS/PAGE of 28.9 kDa under non-reducing conditions. On reduction, 16.1 and 15.4 kDa subunits were observed, suggesting that the molecule is a heterodimer. Tokaracetin inhibited the binding of 125I-labelled bovine von Willebrand factor (vWF) and 125I-labelled human vWF in the presence of botrocetin to fixed human platelets. It did not block ADP-, collagen- or thrombin receptor agonist peptide-induced platelet aggregation in human platelet-rich plasma (PRP), or induce platelet agglutination in PRP. On reduction, tokaracetin lost its inhibitory activity on the agglutination of fixed human platelets by bovine vWF. 125I-Tokaracetin specifically bound to washed human platelets with high affinity (Kd 3.9 +/- 1.4 nM) at 47,440 +/- 2780 binding sites per platelet. Binding of tokaracetin to fixed human platelets was reversible, and was inhibited by monoclonal antibody GUR83-35, which is directed against the N-terminal vWF-binding domain of human glycoprotein Ib (GPIb). Tokaracetin completely inhibited vWF-dependent shear-induced platelet aggregation in PRP at 3 micrograms/ml. The N-terminal amino acid sequences of tokaracetin subunits showed a high degree of identity with those of alboaggregin-B. These results suggest that this new platelet antagonist may be a useful tool in the development of specific inhibitors of the vWF-GPIb interaction.


2001 ◽  
Vol 85 (04) ◽  
pp. 679-685 ◽  
Author(s):  
Nancy Cauwenberghs ◽  
Agotha Schlammadinger ◽  
Stephan Vauterin ◽  
Susan Cooper ◽  
Gretel Descheemaeker ◽  
...  

SummaryIn this paper we describe two pathways leading to platelet activation by crosslinking glycoprotein (GP) Ib to the platelet Fc-receptor (FcγRII). First the monoclonal antibody (MoAb) 9C8, raised against human platelet GPIbα, dose-dependently induced platelet aggregation of citrate-anticoagulated platelet-rich plasma, an effect that can be inhibited by several activation inhibitors. The FcγRII-inhibitory MoAb IV.3 was able to prevent the aggregatory effects of MoAb 9C8, indicating that crosslinking of the antigen GPIbαto the FcγII-receptor is necessary for the activating effect. Secondly we observed a synergistic activating effect of two anti-von Willebrand factor (vWF) MoAbs 1C1E7 and B724, both known to enhance vWF binding to GPIbαin the presence of shear or ristocetin. When these antibodies are added together to PRP, platelet aggregation is induced without further need for an additional modulator. This effect can be blocked by either MoAb IV.3 or an inhibitory anti-GPIbαMoAb, indicating that again the platelet activation results from signaling through FcγRII crosslinked to vWF bound to GPIbα. In addition, both the anti-GPIbαMoAb 9C8, or the two anti-vWF MoAbs 1C1E7 and B724 induce genuine platelet activation, as evidenced by the secretion of ATP and protein tyrosine phosphorylation. These findings with both anti-GPIbαand anti-vWF MoAbs add further proof to recent reports demonstrating an interaction between the platelet receptors GPIbαand FcγRII, suggesting a role for the FcγII-receptor in GPIb-related signaling.


Blood ◽  
1981 ◽  
Vol 58 (5) ◽  
pp. 1027-1031 ◽  
Author(s):  
AJ Marcus ◽  
LB Safier ◽  
HL Ullman ◽  
KT Wong ◽  
MJ Broekman ◽  
...  

Abstract AGEPC (PAF), at 1.9 x 10(-8) M or higher, induced concentration- dependent aggregation and release in human platelet-rich plasma. Comparative studies with arachidonate, collagen, ionophore, and ADP suggested that AGEPC was a strong stimulus for platelet aggregation and probably a moderate agonist for release, as well as a relatively weak inducer of TXA2 production. The initial phase of AGEPC-induced aggregation was independent of ADP release and TXA2 formation, since it was not inhibited by ASA, apyrase, or CP/CPK. Whereas irreversible aggregation always required ADP release, TXA2 formation was not essential in each instance. Thus, in several experiments, full aggregation responses took place in AGEPC-stimulated platelets that had been pretreated with ASA. AGEPC-induced release of 5-HT, beta - thromboglobulin and PF-4 occurred in parallel and were inhibited by both apyrase and ASA. Washed human platelets did not respond to exogenous AGEPC in the absence of ADP and did not appear to generate significant quantities of AGEPC upon stimulation with thrombin or ionophore.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 1898-1903 ◽  
Author(s):  
MD Phillips ◽  
JL Moake ◽  
L Nolasco ◽  
N Turner

Abstract Shear stress activated platelets undergo aggregation in the presence of large or unusually large von Willebrand factor (vWF) multimers without the addition of ristocetin or any other exogenous chemical. This phenomenon may be analogous to the platelet aggregation that leads to thrombosis in the narrowed arteries and arterioles of patients with atherosclerosis or vasospasm. A triphenyl-methyl compound, aurin tricarboxylic acid (ATA), inhibits shear-induced, vWF-mediated platelet aggregation in platelet-rich plasma (PRP) in concentrations above 200 mumol/L and in buffer suspensions of washed platelets at a concentration of 0.1 mumol/L. In a concentration-dependent manner, ATA also inhibits ristocetin-induced, vWF-mediated platelet clumping in both fresh and formaldehyde-fixed platelet suspensions. This inhibition can be overcome by increasing the concentration of vWF, following the kinetics of first order competitive inhibition. ATA prevents the attachment to platelets of the largest vWF multimeric forms found in normal plasma and of the unusually large vWF multimers derived from endothelial cells. The rate of aggregation and degree of inhibition by ATA is not accounted for by the binding of ristocetin or calcium. Arachidonic acid- and adenosine diphosphate (ADP)-induced aggregation are not inhibited by ATA. Platelets incubated with ATA can be easily separated from the compound. However, ATA binds to large vWF multimeric forms and inhibits their ristocetin-induced interaction with platelet glycoprotein Ib. Because ATA also inhibits shear-induced, vWF-mediated platelet aggregation in vitro in the absence of ristocetin, it may be a useful prototype compound to impede the development of arterial thrombosis in vivo.


Blood ◽  
1988 ◽  
Vol 72 (6) ◽  
pp. 1898-1903 ◽  
Author(s):  
MD Phillips ◽  
JL Moake ◽  
L Nolasco ◽  
N Turner

Shear stress activated platelets undergo aggregation in the presence of large or unusually large von Willebrand factor (vWF) multimers without the addition of ristocetin or any other exogenous chemical. This phenomenon may be analogous to the platelet aggregation that leads to thrombosis in the narrowed arteries and arterioles of patients with atherosclerosis or vasospasm. A triphenyl-methyl compound, aurin tricarboxylic acid (ATA), inhibits shear-induced, vWF-mediated platelet aggregation in platelet-rich plasma (PRP) in concentrations above 200 mumol/L and in buffer suspensions of washed platelets at a concentration of 0.1 mumol/L. In a concentration-dependent manner, ATA also inhibits ristocetin-induced, vWF-mediated platelet clumping in both fresh and formaldehyde-fixed platelet suspensions. This inhibition can be overcome by increasing the concentration of vWF, following the kinetics of first order competitive inhibition. ATA prevents the attachment to platelets of the largest vWF multimeric forms found in normal plasma and of the unusually large vWF multimers derived from endothelial cells. The rate of aggregation and degree of inhibition by ATA is not accounted for by the binding of ristocetin or calcium. Arachidonic acid- and adenosine diphosphate (ADP)-induced aggregation are not inhibited by ATA. Platelets incubated with ATA can be easily separated from the compound. However, ATA binds to large vWF multimeric forms and inhibits their ristocetin-induced interaction with platelet glycoprotein Ib. Because ATA also inhibits shear-induced, vWF-mediated platelet aggregation in vitro in the absence of ristocetin, it may be a useful prototype compound to impede the development of arterial thrombosis in vivo.


Blood ◽  
1981 ◽  
Vol 58 (5) ◽  
pp. 1027-1031
Author(s):  
AJ Marcus ◽  
LB Safier ◽  
HL Ullman ◽  
KT Wong ◽  
MJ Broekman ◽  
...  

AGEPC (PAF), at 1.9 x 10(-8) M or higher, induced concentration- dependent aggregation and release in human platelet-rich plasma. Comparative studies with arachidonate, collagen, ionophore, and ADP suggested that AGEPC was a strong stimulus for platelet aggregation and probably a moderate agonist for release, as well as a relatively weak inducer of TXA2 production. The initial phase of AGEPC-induced aggregation was independent of ADP release and TXA2 formation, since it was not inhibited by ASA, apyrase, or CP/CPK. Whereas irreversible aggregation always required ADP release, TXA2 formation was not essential in each instance. Thus, in several experiments, full aggregation responses took place in AGEPC-stimulated platelets that had been pretreated with ASA. AGEPC-induced release of 5-HT, beta - thromboglobulin and PF-4 occurred in parallel and were inhibited by both apyrase and ASA. Washed human platelets did not respond to exogenous AGEPC in the absence of ADP and did not appear to generate significant quantities of AGEPC upon stimulation with thrombin or ionophore.


1994 ◽  
Vol 71 (01) ◽  
pp. 091-094 ◽  
Author(s):  
M Cattaneo ◽  
B Akkawat ◽  
R L Kinlough-Rathbone ◽  
M A Packham ◽  
C Cimminiello ◽  
...  

SummaryNormal human platelets aggregated by thrombin undergo the release reaction and are not readily deaggregated by the combination of inhibitors hirudin, prostaglandin E1 (PGE1) and chymotrypsin. Released adenosine diphosphate (ADP) plays an important role in the stabilization of thrombin-induced human platelet aggregates. Since ticlopidine inhibits the platelet responses to ADP, we studied thrombin-induced aggregation and deaggregation of 14C-serotonin-labeled platelets from 12 patients with cardiovascular disease before and 7 days after the oral administration of ticlopidine, 250 mg b.i.d. Before and after ticlopidine, platelets stimulated with 1 U/ml thrombin aggregated, released about 80–90% 14C-serotinin and did not deaggregate spontaneously within 5 min from stimulation. Before ticlopidine, hirudin (5× the activity of thrombin) and PGE1 (10 μmol/1) plus chymotrypsin (10 U/ml) or plasmin (0.06 U/ml), added at the peak of platelet aggregation, caused slight or no platelet deaggregation. After ticlopidine, the extent of platelet deaggregation caused by the same inhibitors was significantly greater than before ticlopidine. The addition of ADP (10 μmol/1) to platelet suspensions 5 s after thrombin did not prevent the deaggregation of ticlopidine-treated platelets. Thus, ticlopidine facilitates the deaggregation of thrombin-induced human platelet aggregates, most probably because it inhibits the effects of ADP on platelets.


1990 ◽  
Vol 63 (01) ◽  
pp. 112-121 ◽  
Author(s):  
David N Bell ◽  
Samira Spain ◽  
Harry L Goldsmith

SummaryThe effect of red blood cells, rbc, and shear rate on the ADPinduced aggregation of platelets in whole blood, WB, flowing through polyethylene tubing was studied using a previously described technique (1). Effluent WB was collected into 0.5% glutaraldehyde and the red blood cells removed by centrifugation through Percoll. At 23°C the rate of single platelet aggregtion was upt to 9× greater in WB than previously found in platelet-rich plasma (2) at mean tube shear rates Ḡ = 41.9,335, and 1,920 s−1, and at both 0.2 and 1.0 µM ADP. At 0.2 pM ADP, the rate of aggregation was greatest at Ḡ = 41.9 s−1 over the first 1.7 s mean transit time through the flow tube, t, but decreased steadily with time. At Ḡ ≥335 s−1 the rate of aggregation increased between t = 1.7 and 8.6 s; however, aggregate size decreased with increasing shear rate. At 1.0 µM ADP, the initial rate of single platelet aggregation was still highest at Ḡ = 41.9 s1 where large aggregates up to several millimeters in diameter containing rbc formed by t = 43 s. At this ADP concentration, aggregate size was still limited at Ḡ ≥335 s−1 but the rate of single platelet aggregation was markedly greater than at 0.2 pM ADP. By t = 43 s, no single platelets remained and rbc were not incorporated into aggregates. Although aggregate size increased slowly, large aggregates eventually formed. White blood cells were not significantly incorporated into aggregates at any shear rate or ADP concentration. Since the present technique did not induce platelet thromboxane A2 formation or cause cell lysis, these experiments provide evidence for a purely mechanical effect of rbc in augmenting platelet aggregation in WB.


Sign in / Sign up

Export Citation Format

Share Document