Organocatalyzed [3+3] Annulations for the Construction of Heterocycles

Synthesis ◽  
2020 ◽  
Vol 52 (08) ◽  
pp. 1181-1202
Author(s):  
Yannan Zhu ◽  
You Huang

Six-membered heterocyclic systems are widely distributed in many natural products and pharmaceuticals, and the construction of highly functionalized six-membered heterocyclic compounds is an important topic in modern organic synthesis. Organocatalyzed [3+3] annulations represents an important method for assembling a substantial variety of six-membered cycles that contain one or more heteroatoms. This review describes the development of organocatalyzed [3+3] annulations for the synthesis of six-membered heterocycles, including organocatalysis using secondary amines, tertiary amines, phosphines, chiral phosphoric acids and N-heterocyclic carbenes.1 Introduction2 Secondary Amine Catalyzed [3+3] Annulations2.1 Synthesis of Nitrogen Heterocycles2.2 Synthesis of Oxygen Heterocycles2.3 Synthesis of Sulfur Heterocycles3 Tertiary Amine Catalyzed [3+3] Annulations3.1 Catalysis through Multiple Hydrogen-Bonding Interactions3.2 Catalysis of Tertiary Amines as Lewis Bases4 Phosphine-Catalyzed [3+3] Annulations4.1 Synthesis of Nitrogen Heterocycles4.2 Synthesis of Oxygen Heterocycles4.3 Synthesis of Heterocycles Containing Two or More Heteroatoms5 Chiral Phosphoric Acid Catalyzed [3+3] Annulations5.1 Synthesis of Nitrogen Heterocycles5.2 Synthesis of Heterocycles Containing Two or More Heteroatoms6 N-Heterocyclic Carbene Catalyzed [3+3] Annulations6.1 Synthesis of Nitrogen Heterocycles6.2 Synthesis of Oxygen Heterocycles6.3 Synthesis of Heterocycles Containing Two or More Heteroatoms7 Conclusion and Outlook

1987 ◽  
Vol 52 (11) ◽  
pp. 2699-2709 ◽  
Author(s):  
Dalimil Dvořák ◽  
Zdeněk Arnold

Reaction of arylmethylenemalonaldehydes with tributylphosphine and tertiary amines affords compounds of dipolar structure whereas reaction with primary and secondary amines leads to 1,4-addition products. Salts of nucleophilic inorganic anions add to arylmethylenemalonaldehydes under formation of salts of substituted malonaldehydes.


Synlett ◽  
2013 ◽  
Vol 24 (06) ◽  
pp. 661-665 ◽  
Author(s):  
Pavel Nagorny ◽  
Zhankui Sun ◽  
Grace Winschel

2017 ◽  
Vol 203 ◽  
pp. 187-199 ◽  
Author(s):  
Peter C. Ho ◽  
Hilary A. Jenkins ◽  
James F. Britten ◽  
Ignacio Vargas-Baca

The supramolecular macrocycles spontaneously assembled by iso-tellurazole N-oxides are stable towards Lewis bases as strong as N-heterocyclic carbenes (NHC) but readily react with Lewis acids such as BR3 (R = Ph, F). The electron acceptor ability of the tellurium atom is greatly enhanced in the resulting O-bonded adducts, which consequently enables binding to a variety of Lewis bases that includes acetonitrile, 4-dimethylaminopyridine, 4,4′-bipyridine, triphenyl phosphine, a N-heterocyclic carbene and a second molecule of iso-tellurazole N-oxide.


2005 ◽  
Vol 58 (1) ◽  
pp. 47 ◽  
Author(s):  
Graham Smith ◽  
Andy W. Hartono ◽  
Urs D. Wermuth ◽  
Peter C. Healy ◽  
Jonathan M. White ◽  
...  

The crystal structures of the proton-transfer compounds of 5-nitrosalicylic acid (5-nsa) with morpholine (morph), hexamethylenetetramine (hmt), and ethylenediamine (en) have been determined and their solid-state packing structures described. The compounds are [(morph)+(5-nsa)–] 1, [(hmt)+(5-nsa)–·H2O] 2, and [(en)2+2(5-nsa)–·H2O] 3. In all compounds, protonation of the hetero-nitrogen of the Lewis base occurs. With 1, the 5-nsa anions and the morpholine cations lie, respectively, in or across crystallographic mirror planes and are linked within the planes by hydrogen-bonding interactions through the aminium group and the carboxylic and phenolic oxygens of the anionic 5-nsa species giving a two-dimensional sheet polymer. Compound 2 is an unusual structure with the planar 5-nsa anions lying within pseudo mirror planes and cyclically linked by duplex water bridges through a single carboxylate oxygen into centrosymmetric dimers. The hmt cation molecules are disordered across the pseudo mirror and are strongly linked by N+–H···O hydrogen bonds only to the water molecules with peripheral weak hmt C–H···O hydrogen bonds extending the dimer within and between the dimer planes. Compound 3 is a network polymer comprised of the 5-nsa anions, the en dianions, and the water molecule in an extensive hydrogen-bonded structure.


Synlett ◽  
2018 ◽  
Vol 30 (04) ◽  
pp. 483-487 ◽  
Author(s):  
Shuo Tong ◽  
Mei-Xiang Wang

A general and efficient method for the synthesis of highly enantiopure 4-amino-1,2,3,4-tetradydropyridine derivatives based on chiral phosphoric acid catalyzed intramolecular nucleophilic addition of tertiary enamides to imines has been developed. We have also demonstrated a substrate engineering strategy to significantly improve the enantioselectivity of asymmetric catalysis


Sign in / Sign up

Export Citation Format

Share Document