IDENTIFYING AMPULLA AND DIFFICULTY OF SELECTIVE CANNULATION WITH ARTIFICIAL-INTELLIGENCE ASSISTED ANALYSIS OF ERCP IMAGE

2020 ◽  
Author(s):  
KW Lee ◽  
JM Lee ◽  
HJ Jeon ◽  
SH Kim ◽  
S Jang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taesung Kim ◽  
Jinhee Kim ◽  
Hyuk Soon Choi ◽  
Eun Sun Kim ◽  
Bora Keum ◽  
...  

AbstractThe advancement of artificial intelligence (AI) has facilitated its application in medical fields. However, there has been little research for AI-assisted endoscopy, despite the clinical significance of the efficiency and safety of cannulation in the endoscopic retrograde cholangiopancreatography (ERCP). In this study, we aim to assist endoscopists performing ERCP through automatic detection of the ampulla and the identification of cannulation difficulty. We developed a novel AI-assisted system based on convolutional neural networks that predict the location of the ampulla and the difficulty of cannulation to the ampulla. ERCP data of 531 and 451 patients were utilized in the evaluation of our model for each task. Our model detected the ampulla with mean intersection-over-union 64.1%, precision 76.2%, recall 78.4%, and centroid distance 0.021. In classifying the cannulation difficulty, it achieved the recall of 71.9% for the class of easy cases and that of 61.1% for that of difficult cases. Remarkably, our model accurately detected AOV with varying morphological shape, size, and texture on par with the level of a human expert and showed promising results for recognizing cannulation difficulty. It demonstrated its potential to improve the quality of ERCP by assisting endoscopists.


Author(s):  
M Wessendorf ◽  
A Beuning ◽  
D Cameron ◽  
J Williams ◽  
C Knox

Multi-color confocal scanning-laser microscopy (CSLM) allows examination of the relationships between neuronal somata and the nerve fibers surrounding them at sub-micron resolution in x,y, and z. Given these properties, it should be possible to use multi-color CSLM to identify relationships that might be synapses and eliminate those that are clearly too distant to be synapses. In previous studies of this type, pairs of images (e.g., red and green images for tissue stained with rhodamine and fluorescein) have been merged and examined for nerve terminals that appose a stained cell (see, for instance, Mason et al.). The above method suffers from two disadvantages, though. First, although it is possible to recognize appositions in which the varicosity abuts the cell in the x or y axes, it is more difficult to recognize them if the apposition is oriented at all in the z-axis—e.g., if the varicosity lies above or below the neuron rather than next to it. Second, using this method to identify potential appositions over an entire cell is time-consuming and tedious.


Author(s):  
David L. Poole ◽  
Alan K. Mackworth

Sign in / Sign up

Export Citation Format

Share Document