scholarly journals Transition-Metal-Catalyzed Amination of Aryl Fluorides

Synlett ◽  
2020 ◽  
Vol 31 (12) ◽  
pp. 1135-1139
Author(s):  
Hang Shi ◽  
Qi-Kai Kang ◽  
Yunzhi Lin ◽  
Yuntong Li

Arene activation via transition-metal (TM) η6-coordination has merged as a powerful method to diversify the aromatic C–F bond, which is relatively less reactive due to its high bond energy. However, this strategy in general requires to use largely excess arenes or TM η6-complexes as the substrates. Herein, we highlight our recent work on the catalytic SNAr amination of electron-rich and electron-neutral aryl fluorides that are inert in classical SNAr reactions. This protocol enabled by a Ru/hemilabile ligand catalyst covers a broad scope of substrates without wasting arenes. Mechanistic studies revealed that the nucleo­philic substitution proceeded on a Ru η6-arene complex, and the hemilabile ligand significant promoted the arene dissociation.

2019 ◽  
Vol 91 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Wei Ren ◽  
Qiang Yang ◽  
Shang-Dong Yang

Abstract Phosphorus-radical participated difunctionalization reactions with unsaturated compounds have been recognized as powerful method for organic synthesis. This review covers our recent work on the application of transition metal catalyzed P-radical promoted difunctionalization for synthesis of organophosphorus compounds.


2020 ◽  
Vol 18 (3) ◽  
pp. 391-399 ◽  
Author(s):  
Hongru Zhang ◽  
Xin Su ◽  
Kaiwu Dong

Hydrocyanation is a powerful method for the preparation of nitriles which are versatile building blocks for the synthesis of amines, acids and amides.


Molecules ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 830 ◽  
Author(s):  
Jagadeesh Kalepu ◽  
Lukasz Pilarski

Weinreb amides are a privileged, multi-functional group with well-established utility in classical synthesis. Recently, several studies have demonstrated the use of Weinreb amides as interesting substrates in transition metal-catalyzed C-H functionalization reactions. Herein, we review this part of the literature, including the metal catalysts, transformations explored so far and specific insights from mechanistic studies.


Synthesis ◽  
2021 ◽  
Author(s):  
Jie Jia ◽  
Fangdong Hu ◽  
Ying Xia

Transition-metal-catalyzed nucleophilic dearomatization of electron-deficient heteroarenes, such as pyridines, quinolines, isoquinolines and nitroindoles, has become a powerful method for the access of unsaturated heterocycles in recent decades. This short review summarizes nucleophilic dearomatization of electron-deficient heteroarenes with carbon- and heteroatom-based nucleophiles via transition-metal catalysis. A great number of functionalized heterocycles were obtained in this transformation. Importantly, many of these reactions were carried out in an enantioselective manner by means of asymmetric catalysis, providing a unique method for the construction of enantioenriched heterocycles. 1 Introduction 2 Transition-metal-catalyzed nucleophilic dearomatization of heteroarenes via alkynylation 3 Transition-metal-catalyzed nucleophilic dearomatization of heteroarenes via arylation 4 Transition-metal-catalyzed nucleophilic dearomatization of heteroarenes with other nucleophiles 5 Transition-metal-catalyzed nucleophilic dearomatization with nucleophiles formed in situ 6 Conclusion and outlook


2019 ◽  
Vol 15 ◽  
pp. 2213-2270 ◽  
Author(s):  
Xiaowei Li ◽  
Xiaolin Shi ◽  
Xiangqian Li ◽  
Dayong Shi

Fluorine chemistry plays an increasingly important role in pharmaceutical, agricultural, and materials industries. The incorporation of fluorine-containing groups into organic molecules can improve their chemical and physical properties, which attracts continuous interest in organic synthesis. Among various reported methods, transition-metal-catalyzed fluorination/fluoroalkylation has emerged as a powerful method for the construction of these compounds. This review attempts to describe the major advances in the transition-metal-catalyzed incorporation of fluorine, trifluoromethyl, difluoromethyl, trifluoromethylthio, and trifluoromethoxy groups reported between 2011 and 2019.


Synlett ◽  
2017 ◽  
Vol 28 (15) ◽  
pp. 1867-1872 ◽  
Author(s):  
Hai-Chao Xu ◽  
Zhong-Wei Hou ◽  
Zhong-Yi Mao

The oxidative [3+2] cycloaddition of alkynes with arylamines is a powerful method for the synthesis of (aza)indoles because it employs unfunctionalized and easily available materials. Herein, recent progress in the synthesis of (aza)indoles through transition metal-catalyzed oxidative [3+2] cycloaddition is highlighted.1 Introduction2 Second-Row Transition-Metal Catalysts3 First-Row Transition-Metal Catalysts4 Summary


Sign in / Sign up

Export Citation Format

Share Document